为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经...为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经网络相结合的混合算法模型;对测试的断路器操作机构进行状态分析。结果表明,混合算法能够将操作机构不同状态进行聚类,可将相同故障分在同一类别。并将混合算法模型与SOM神经网络模型和K-means模型作比较,结果表明,混合算法模型在计算速度和聚类准确率上都优于其他两种模型。展开更多
汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driv...汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driving Cycles based on SOM and Markov model,ADCSM)。首先行驶数据进行Daubechies-4阶小波分析降噪,划分短行程,对短行程提取了10个特征,将短行程特征输入SOM神经网络,然后聚类到(1*3)神经网络中,得到聚类结果序列,并建立了马尔可夫模型,最终通过ADCSM算法完成工况构建。对所构建的工况进行了验证,并将所得工况与传统的K-means聚类构建方法的结果进行了比较分析。实验结果表明,ADCSM最终误差为4.07%,而传统的K-means误差为8.77%,ADCSM利用了SOM神经网络聚类的方法,比传统K-means方法聚类精度更高,并具备了工况自学习能力。ADCSM利用马尔可夫模型方法体现了城市行驶状况的转换关系,与传统K-means行驶工况构建方法相比粒度更细,故合成的行驶工况效果更好,更能反映城市特征。展开更多
文摘为诊断高压断路器操作机构故障,文中基于分合闸线圈电流曲线,提出了采用K-means与SOM神经网络相结合的混合算法,对断路器操作机构进行状态评估。对某批次252 k V高压断路器操作机构进行分合闸线圈电流数据采集;建立了K-means与SOM神经网络相结合的混合算法模型;对测试的断路器操作机构进行状态分析。结果表明,混合算法能够将操作机构不同状态进行聚类,可将相同故障分在同一类别。并将混合算法模型与SOM神经网络模型和K-means模型作比较,结果表明,混合算法模型在计算速度和聚类准确率上都优于其他两种模型。
文摘汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driving Cycles based on SOM and Markov model,ADCSM)。首先行驶数据进行Daubechies-4阶小波分析降噪,划分短行程,对短行程提取了10个特征,将短行程特征输入SOM神经网络,然后聚类到(1*3)神经网络中,得到聚类结果序列,并建立了马尔可夫模型,最终通过ADCSM算法完成工况构建。对所构建的工况进行了验证,并将所得工况与传统的K-means聚类构建方法的结果进行了比较分析。实验结果表明,ADCSM最终误差为4.07%,而传统的K-means误差为8.77%,ADCSM利用了SOM神经网络聚类的方法,比传统K-means方法聚类精度更高,并具备了工况自学习能力。ADCSM利用马尔可夫模型方法体现了城市行驶状况的转换关系,与传统K-means行驶工况构建方法相比粒度更细,故合成的行驶工况效果更好,更能反映城市特征。