随着区块链技术的兴起,智能合约安全问题被越来越多的研究者和企业重视,目前已有一些针对智能合约缺陷检测技术的研究.软件缺陷预测技术是软件缺陷检测技术的有效补充,能够优化测试资源分配,提高软件测试效率.然而,目前还没有针对智能...随着区块链技术的兴起,智能合约安全问题被越来越多的研究者和企业重视,目前已有一些针对智能合约缺陷检测技术的研究.软件缺陷预测技术是软件缺陷检测技术的有效补充,能够优化测试资源分配,提高软件测试效率.然而,目前还没有针对智能合约的软件缺陷预测研究.针对这一问题,提出了面向Solidity智能合约的缺陷预测方法.首先,设计了一组针对Solidity智能合约特有的变量、函数、结构和Solidity语言特性的度量元集(smart contract-Solidity,SC-Sol度量元集),并将其与重点考虑面向对象特征的度量元集(code complexity and features of object-oriented program,COOP度量元集)组合为COOP-SC-Sol度量元集.然后,从Solidity智能合约代码中提取相关度量元信息,并结合缺陷检测结果,构建Solidity智能合约缺陷数据集.在此基础上,应用了7种回归模型和6种分类模型进行Solidity智能合约的缺陷预测,以验证不同度量元集和不同模型在缺陷数量和倾向性预测上的性能差异.实验结果表明,相对于COOP度量元集,COOP-SC-Sol能够让缺陷预测模型的F1-score指标提升8%.此外,进一步研究了智能合约缺陷预测中的类不平衡问题,实验结果表明,通过采样技术对数据集进行预处理能够提升缺陷预测模型的性能,其中随机欠采样技术能够使模型的F1-score指标提升9%.在特定缺陷倾向性预测问题上,模型的预测性能受到数据集类不平衡的影响,在缺陷模块百分比大于10%的数据集中能取得较好的预测性能.展开更多
Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air f...Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients.展开更多
Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly ...Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly increase power capture of a VAWT using constant CC jet momentum, but a practical method of minimizing CC usage has yet to be explored. In addition, VAWTs are typically limited in power capture performance either by a maximum peak at a small set of TSR or wide operating TSR at fractions of the peak performance based on the design solidity. Both the reduced jet usage and solidity limitation were addressed by developing a method of dynamically using CC to perform a virtual solidity change. The developed method described within this work used CC to change blade aerodynamics to specifically match a maximum performing static solidity or wake shape at a given TSR. Simulation results using an existing aerodynamics model indicated a significant reduction in the re-quired CC jet momentum compared to a constant CC system along with control over power capture for a CC-VAWT.展开更多
According to current solar power research,both the generating unit’s minimum start-up speed and power generation system’s minimum flow rate for operation decrease with the increase in the impeller solidity.Ideally,a...According to current solar power research,both the generating unit’s minimum start-up speed and power generation system’s minimum flow rate for operation decrease with the increase in the impeller solidity.Ideally,a high solidity should be achieved,as this translates more power for a solar power system in the start-up and shut-down cycles.However,increasing the number of blades does not increase the impeller solidity;therefore,there is an optimal number of blades needed to achieve the preferred solidity.This paper begins by selecting the blade airfoil and then performs a theoretical analysis based on the relationship between the blade number and chord length.Experiments are conducted to measure the starting and stopping wind speeds and power characteristics for different numbers of blades.The results show that a maximum impeller solidity of 0.2862 is achieved,as well as the minimum flow speed at the start-up,and the maintenance of the solar chimney power generation system is optimized when there are four blades.展开更多
Since the independence of Russia, Sino-Russian relations have been develop-ing all along in a progressive momentum. At present, the two countrieshave established the "21st century-oriented strategic cooperative p...Since the independence of Russia, Sino-Russian relations have been develop-ing all along in a progressive momentum. At present, the two countrieshave established the "21st century-oriented strategic cooperative partnership of e-quality and mutual trust". Serving the basic interests of both sides with solid po-litical basis, the state relationship of this new type has proved to be the bestchoice of the Chinese and Russian people for the further development of bilateralties in the 21st century. Its major characteristics are as follows: A. Strategic cooperative partnership is established on the basis of the com-prehensive and gradual development of the Sino-Russian relations.展开更多
Even more fascinating than its bulk parent,a water droplet possesses extraordinary catalytic and hydro-voltaic capability,elastic adaptivity,hydrophobicity,sensitivity,thermal stability,etc.,but the underlying mechani...Even more fascinating than its bulk parent,a water droplet possesses extraordinary catalytic and hydro-voltaic capability,elastic adaptivity,hydrophobicity,sensitivity,thermal stability,etc.,but the underlying mechanism is still elusive.We emphasize herewith that the H‒O bond follows the universal bond order‒length‒strength cor-relation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond(O:H‒O).Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H‒O bond by up to 10%while lengthening the intermolecular O:H nonbond by 20%cooperatively with an association of electron polarization,making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification.The supersolid skin dictates the performance and functionality of the droplet in chemical,dielectric,electrical,mechanical,optical,and thermal properties as well as the transport dynamics of electrons and phonons.The amplification of these findings could deepen our insight into the undercoordi-nated aqueous systems,including bubbles and molecular clusters,and promote deep engineering of water and ice.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,...Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,etc.However,rarely has this technique been successfully used to the study of internal flow such as compressor cascade,since narrow flow passages would heavily restrict the acquisition of PSP images.In this paper,PSP technique was used to study the pressure distribution on a linear compressor cascade with large solidity of 2.3,where the view of recording camera can be heavily blocked due to adjacent blade surfaces.To help get integrated PSP images of the internal flow passage,dual camera system along with image processing tools like 3D reconstruction and image integration were adopted.The results showed that with the aid of such assistance,image results with good quality and readability could be obtained.Meanwhile,pressure data given by PSP were compared with data from traditional way of pressure taps and showed good consistency.Massive results of the entire cascade passage surface were given with different inlet Mach numbers and incidence angles.The results showed that PSP technique can integrally measure cascade tunnel of large solidity with the help of dual-camera system.展开更多
Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range)....Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal compressor, a multi-objective one-dimensional optimization design program was put forward combined with modified Two-Zone model and a low solidity vaned diffuser(LSVD) design method. Then, a centrifugal compressor aerodynamic component optimization design system was established with the three-dimensional blade optimization design method based on neural network and genetic optimization algorithm. Then a validation was done by redesigning the Krain-Impeller to get better performance. Finally, the aerodynamic design of the first stage of IGC was completed. The CFD calculation results indicated that the total-to-total pressure ratio of the first stage was 2.51 and the polytropic efficiency was 91.0% at the design point. What’s more, an operation margin and surge margin of the compressor was about 26.5% and 16.4% respectively.展开更多
According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the...According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating...High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confn'm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selectio...A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.展开更多
文摘随着区块链技术的兴起,智能合约安全问题被越来越多的研究者和企业重视,目前已有一些针对智能合约缺陷检测技术的研究.软件缺陷预测技术是软件缺陷检测技术的有效补充,能够优化测试资源分配,提高软件测试效率.然而,目前还没有针对智能合约的软件缺陷预测研究.针对这一问题,提出了面向Solidity智能合约的缺陷预测方法.首先,设计了一组针对Solidity智能合约特有的变量、函数、结构和Solidity语言特性的度量元集(smart contract-Solidity,SC-Sol度量元集),并将其与重点考虑面向对象特征的度量元集(code complexity and features of object-oriented program,COOP度量元集)组合为COOP-SC-Sol度量元集.然后,从Solidity智能合约代码中提取相关度量元信息,并结合缺陷检测结果,构建Solidity智能合约缺陷数据集.在此基础上,应用了7种回归模型和6种分类模型进行Solidity智能合约的缺陷预测,以验证不同度量元集和不同模型在缺陷数量和倾向性预测上的性能差异.实验结果表明,相对于COOP度量元集,COOP-SC-Sol能够让缺陷预测模型的F1-score指标提升8%.此外,进一步研究了智能合约缺陷预测中的类不平衡问题,实验结果表明,通过采样技术对数据集进行预处理能够提升缺陷预测模型的性能,其中随机欠采样技术能够使模型的F1-score指标提升9%.在特定缺陷倾向性预测问题上,模型的预测性能受到数据集类不平衡的影响,在缺陷模块百分比大于10%的数据集中能取得较好的预测性能.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51279190 and 51311140259)the Shandong Province Natural Science Foundation for Distinguished Young Scholars(Grant No.JQ201314)
文摘Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column(OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients.
文摘Vertical Axis Wind Turbines (VAWTs) with fixed pitch blades have a limited power capture performance envelope as the Tip Speed Ratio (TSR) changes. Circulation Control (CC) has been proposed and simulated to possibly increase power capture of a VAWT using constant CC jet momentum, but a practical method of minimizing CC usage has yet to be explored. In addition, VAWTs are typically limited in power capture performance either by a maximum peak at a small set of TSR or wide operating TSR at fractions of the peak performance based on the design solidity. Both the reduced jet usage and solidity limitation were addressed by developing a method of dynamically using CC to perform a virtual solidity change. The developed method described within this work used CC to change blade aerodynamics to specifically match a maximum performing static solidity or wake shape at a given TSR. Simulation results using an existing aerodynamics model indicated a significant reduction in the re-quired CC jet momentum compared to a constant CC system along with control over power capture for a CC-VAWT.
基金the Scientific Research Project of Inner Mongolia University under Grant No.NJZY19075.
文摘According to current solar power research,both the generating unit’s minimum start-up speed and power generation system’s minimum flow rate for operation decrease with the increase in the impeller solidity.Ideally,a high solidity should be achieved,as this translates more power for a solar power system in the start-up and shut-down cycles.However,increasing the number of blades does not increase the impeller solidity;therefore,there is an optimal number of blades needed to achieve the preferred solidity.This paper begins by selecting the blade airfoil and then performs a theoretical analysis based on the relationship between the blade number and chord length.Experiments are conducted to measure the starting and stopping wind speeds and power characteristics for different numbers of blades.The results show that a maximum impeller solidity of 0.2862 is achieved,as well as the minimum flow speed at the start-up,and the maintenance of the solar chimney power generation system is optimized when there are four blades.
文摘Since the independence of Russia, Sino-Russian relations have been develop-ing all along in a progressive momentum. At present, the two countrieshave established the "21st century-oriented strategic cooperative partnership of e-quality and mutual trust". Serving the basic interests of both sides with solid po-litical basis, the state relationship of this new type has proved to be the bestchoice of the Chinese and Russian people for the further development of bilateralties in the 21st century. Its major characteristics are as follows: A. Strategic cooperative partnership is established on the basis of the com-prehensive and gradual development of the Sino-Russian relations.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2024A1515011094National Natural Science Foundation of China,Grant/Award Numbers:12304243,12150100。
文摘Even more fascinating than its bulk parent,a water droplet possesses extraordinary catalytic and hydro-voltaic capability,elastic adaptivity,hydrophobicity,sensitivity,thermal stability,etc.,but the underlying mechanism is still elusive.We emphasize herewith that the H‒O bond follows the universal bond order‒length‒strength cor-relation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond(O:H‒O).Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H‒O bond by up to 10%while lengthening the intermolecular O:H nonbond by 20%cooperatively with an association of electron polarization,making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification.The supersolid skin dictates the performance and functionality of the droplet in chemical,dielectric,electrical,mechanical,optical,and thermal properties as well as the transport dynamics of electrons and phonons.The amplification of these findings could deepen our insight into the undercoordi-nated aqueous systems,including bubbles and molecular clusters,and promote deep engineering of water and ice.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金This study was co-supported by the National Natural Science Foundation of China(No.51790512)the Ministry of Education of the People's Republic of China(111 Project,No.B17037).
文摘Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,etc.However,rarely has this technique been successfully used to the study of internal flow such as compressor cascade,since narrow flow passages would heavily restrict the acquisition of PSP images.In this paper,PSP technique was used to study the pressure distribution on a linear compressor cascade with large solidity of 2.3,where the view of recording camera can be heavily blocked due to adjacent blade surfaces.To help get integrated PSP images of the internal flow passage,dual camera system along with image processing tools like 3D reconstruction and image integration were adopted.The results showed that with the aid of such assistance,image results with good quality and readability could be obtained.Meanwhile,pressure data given by PSP were compared with data from traditional way of pressure taps and showed good consistency.Massive results of the entire cascade passage surface were given with different inlet Mach numbers and incidence angles.The results showed that PSP technique can integrally measure cascade tunnel of large solidity with the help of dual-camera system.
基金This research was supported by the National Key R&D Plan of China (Grant No. 2017YFB0903602)Newton Advanced Fellowship of the Royal Society (Grant No. NA170093)+1 种基金the Transformational Technologies for Clean Energy and Demonstration, Strategic Priority Research Program of CAS (Grant No. XDA21070200)the Frontier Science Research Project of CAS (Grant No. QYZDB-SSW-JSC023).
文摘Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal compressor, a multi-objective one-dimensional optimization design program was put forward combined with modified Two-Zone model and a low solidity vaned diffuser(LSVD) design method. Then, a centrifugal compressor aerodynamic component optimization design system was established with the three-dimensional blade optimization design method based on neural network and genetic optimization algorithm. Then a validation was done by redesigning the Krain-Impeller to get better performance. Finally, the aerodynamic design of the first stage of IGC was completed. The CFD calculation results indicated that the total-to-total pressure ratio of the first stage was 2.51 and the polytropic efficiency was 91.0% at the design point. What’s more, an operation margin and surge margin of the compressor was about 26.5% and 16.4% respectively.
文摘According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金financially supported by Japan Society for the Promotion of Science(JSPS) program of"Strategic young researcher overseas visits program for accelerating brain circulation"
文摘High-pressure ratio and wide operating range are highly required for compressors and blowers. The technical issue of the design is achievement of suppression of flow separation at small flow rate without deteriorating the efficiency at design flow rate. A numerical simulation is very effective in design procedure, however, cost of the numerical simulation is generally high during the practical design process, and it is difficult to confn'm the optimal design which is combined with many parameters. A multi-objective optimization technique is the idea that has been proposed for solving the problem in practical design process. In this study, a Low Solidity circular cascade Diffuser (LSD) in a centrifugal blower is successfully designed by means of multi-objective optimization technique. An optimization code with a meta-model assisted evolutionary algorithm is used with a commercial CFD code ANSYS-CFX. The optimization is aiming at improving the static pressure coefficient at design point and at low flow rate condition while constraining the slope of the lift coefficient curve. Moreover, a small tip clearance of the LSD blade was applied in order to activate and to stabilize the secondary flow effect at small flow rate condition. The optimized LSD blade has an extended operating range of 114 % towards smaller flow rate as compared to the baseline design without deteriorating the diffuser pressure recovery at design point. The diffuser pressure rise and operating flow range of the optimized LSD blade are experimentally verified by overall performance test. The detailed flow in the diffuser is also confirmed by means of a Particle Image Velocimeter. Secondary flow is clearly captured by PIV and it spreads to the whole area of LSD blade pitch. It is found that the optimized LSD blade shows good improvement of the blade loading in the whole operating range, while at small flow rate the flow separation on the LSD blade has been successfully suppressed by the secondary flow effect.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
文摘A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.