An LD directly-pumped solid-state laser is considered to be one of the most promising mid-infrared light sources because of its simple principle,small size,and compact structure for the generation of mid-infrared(MIR)...An LD directly-pumped solid-state laser is considered to be one of the most promising mid-infrared light sources because of its simple principle,small size,and compact structure for the generation of mid-infrared(MIR)lasers in the 3-5µm band.However,the quantum defect of LD directly-pumped MIR solid-state lasers will be much larger than that of ordinary near-infrared LD pumped solid-state lasers,which may lead to thermal damage and limit their development.In order to solve this problem,the methods of reducing the specific surface area of the crystal and improving the thermal energy released by the crystal structure are discussed,and the opti⁃mal length of the laser crystal is determined.The cooling structures of barium yttrium fluoride laser crystals(Ho^(3+):BY_(2)F_(8))of different lengths were studied by thermal simulation using COMSOL software.The experimen⁃tal results show that the output power can be increased and the thermal stress in the laser crystal can be alleviated by using the laser crystal whose length is slightly shorter than that of the cooler.The final experiment shows that when the pump repetition rate is 15 Hz and the pulse width is 90µs,the single pulse energy is 7.28 mJ at the out⁃put wavelength of 3.9µm,which is about 3 times as large as that of the crystal with the length of 10 mm(2.81 mJ).Such results should be another breakthrough of our team since the first directly-pumped solid-state MIR laser was realized more than a year ago.It might pave the way for the construction of a feasible MIR laser in the near future.展开更多
Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as...Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as well as favorable chemical and thermal stability of glass,has attracted widespread attention.There have been only very few reports of Y_(1.31)Ce_(0.09)Gd_(1.6)Al_(5)O_(12)(Ce:GdYAG)PiG for solid-state laser light-ing.Herein,a series of Ce:GdYAG PiG samples are fabricated by a simple solid-state sintering method.Impressively,the supreme internal quantum efficiency of as-prepared PiG is 91%,which is very close to original phosphors(95%).Furthermore,PiG exhibits a high thermal conductivity(1.844 W m^(−1)K^(−1))and a maximum transparency(62%).Remarkably,by changing the concentration of phosphors and the thickness of PiG samples,a luminous efficacy of 163.5 lm/W,high color rendering index of 74.8 and low correlated color temperature of 4806.8 K are achieved under blue laser irradiation.These results indicate that the Ce:GdYAG PiG samples have shown tremendous application foreground as all-inorganic color converter for solid-state laser lighting.展开更多
Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ...The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.展开更多
A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM ...A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.展开更多
We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapou...We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.展开更多
Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be...Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be 2.1 kHz within 5μs by using a single mode fiber link.We use the monolithic laser to measure the angular speed of a spinning motor and simulate a linearly frequency modulated continuous-wave ladar system in laboratory.展开更多
A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically,...A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically, is investigated. Inserting a rectangular prism (RP) into the laser cavity is a promising approach towards the goal of periodically moving the position of the focus spot of the intracavity pulse on the SESAM surface to avoid the long-time irradiation of the laser beam on the same position, thereby solving a series of problems caused by damage to the SESAM and greatly prolonging its usage life. The adjustment of the rectangular prism in the laser cavity does not break the stable continuous wave (CW) mode-locked condition. The laser generates a stable picosecond pulse sequence at 1064 nm with an output power of 3.6 W and a pulse width of 14 ps. The instabilities of the output power and the pulse width are 1.77% and 4.5%, respectively.展开更多
A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency co...A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency conversion efficiency (infrared-to-ultraviolet) is 14.3%. The power stability of the ultraviolet laser is better than 1% in 30min.展开更多
In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as satur...In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.展开更多
A 60-mW solid-state deep ultraviolet(DUV)laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals.The pump lasers,at 258 and 1553 nm,are derived from a homemade Yb-...A 60-mW solid-state deep ultraviolet(DUV)laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals.The pump lasers,at 258 and 1553 nm,are derived from a homemade Yb-hybrid laser employing fourth-harmonic generation and Er-doped fiber laser,respectively.The Yb-hybrid laser,finally,is power scaling by a 2 mm×2 mm×30 mm Yb:YAG bulk crystal.Accompanied by the generated 220-mW DUV laser at 221 nm,the 193-nm laser delivers an average power of 60 mW with a pulse duration of 4.6 ns,a repetition rate of 6 kHz,and a linewidth of∼640 MHz.To the best of our knowledge,this is the highest power of 193-and 221-nm laser generated by an LBO crystal ever reported as well as the narrowest linewidth of 193-nm laser by it.Remarkably,the conversion efficiency reaches 27%for 221 to 193 nm and 3%for 258 to 193 nm,which are the highest efficiency values reported to date.We demonstrate the huge potential of LBO crystals for producing hundreds of milliwatt or even watt level 193-nm laser,which also paves a brand-new way to generate other DUV laser wavelengths.展开更多
This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature&l...This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.展开更多
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag...Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.展开更多
Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transf...Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.展开更多
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit...High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.展开更多
Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular st...Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.展开更多
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten...Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.展开更多
Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical dur...Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.展开更多
Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials ...Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.展开更多
基金Supported by the National Key Research and Development Program of China(2021YFA0718803)。
文摘An LD directly-pumped solid-state laser is considered to be one of the most promising mid-infrared light sources because of its simple principle,small size,and compact structure for the generation of mid-infrared(MIR)lasers in the 3-5µm band.However,the quantum defect of LD directly-pumped MIR solid-state lasers will be much larger than that of ordinary near-infrared LD pumped solid-state lasers,which may lead to thermal damage and limit their development.In order to solve this problem,the methods of reducing the specific surface area of the crystal and improving the thermal energy released by the crystal structure are discussed,and the opti⁃mal length of the laser crystal is determined.The cooling structures of barium yttrium fluoride laser crystals(Ho^(3+):BY_(2)F_(8))of different lengths were studied by thermal simulation using COMSOL software.The experimen⁃tal results show that the output power can be increased and the thermal stress in the laser crystal can be alleviated by using the laser crystal whose length is slightly shorter than that of the cooler.The final experiment shows that when the pump repetition rate is 15 Hz and the pulse width is 90µs,the single pulse energy is 7.28 mJ at the out⁃put wavelength of 3.9µm,which is about 3 times as large as that of the crystal with the length of 10 mm(2.81 mJ).Such results should be another breakthrough of our team since the first directly-pumped solid-state MIR laser was realized more than a year ago.It might pave the way for the construction of a feasible MIR laser in the near future.
基金supported by the Key Research and Development Project in Zhejiang Province(No.2021C01024).
文摘Stable,efficient and high color rendering index all-inorganic color converters are urgently demanded for white laser diodes.Phosphor-in-glass(PiG),possessing the advantages of phosphors excellent quantum efficiency as well as favorable chemical and thermal stability of glass,has attracted widespread attention.There have been only very few reports of Y_(1.31)Ce_(0.09)Gd_(1.6)Al_(5)O_(12)(Ce:GdYAG)PiG for solid-state laser light-ing.Herein,a series of Ce:GdYAG PiG samples are fabricated by a simple solid-state sintering method.Impressively,the supreme internal quantum efficiency of as-prepared PiG is 91%,which is very close to original phosphors(95%).Furthermore,PiG exhibits a high thermal conductivity(1.844 W m^(−1)K^(−1))and a maximum transparency(62%).Remarkably,by changing the concentration of phosphors and the thickness of PiG samples,a luminous efficacy of 163.5 lm/W,high color rendering index of 74.8 and low correlated color temperature of 4806.8 K are achieved under blue laser irradiation.These results indicate that the Ce:GdYAG PiG samples have shown tremendous application foreground as all-inorganic color converter for solid-state laser lighting.
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
文摘The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.
文摘A high-power cw all-solid-state Nd:GdVO4 laser operating at 88Onto is reported. The laser consists of a low doped level Nd:GdV04 crystal dual-end-pumped by two high-power diode lasers and a compact negative confocM unstable-stable hybrid resonator. At an incident pump power of 820 W, a maximum cw output of 240 W at 1064nm is obtained. The optical-to-optical efficiency and Mope efficiency are 40.7% and 53.2%, respectively. The M2 factors in the unstable direction and in the stable direction are 4.38 and 5.44, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60225005 and 10227401, the Knowledge Innovation Programme of Chinese Academy of Sciences, and the National Hi-Tech ICF Committee of China.
文摘We realize a stable self-starting passively mode-locking all-solid-state laser by using novel GaAs mirrors as the absorber and output coupler. The GaAs mirror is grown by the technology of metal organic chemical vapour deposition at low temperature. With such an absorber as the output coupler in the laser resonator, laser pulses with duration of 42ps were generated at a repetition rate of 400MHz, corresponding to the average power of 590mW.
文摘Two models of laser diode pumped unidirectional single-frequency ring laser with maximum single frequency output power of 1 W and 780 mW are investigated.The Statistic linewidth of the free-run laser is measured to be 2.1 kHz within 5μs by using a single mode fiber link.We use the monolithic laser to measure the angular speed of a spinning motor and simulate a linearly frequency modulated continuous-wave ladar system in laboratory.
基金Project supported by the State Key Laboratory of Tribology,Tsinghua University,China (Grant No.SKLT08A05)
文摘A laser diode end-pumped passively mode-locked Nd:YVO4 solid-state laser with a semiconductor saturable ab- sorber mirror (SESAM), in which the intracavity laser beam spot on the SESAM can be adjusted periodically, is investigated. Inserting a rectangular prism (RP) into the laser cavity is a promising approach towards the goal of periodically moving the position of the focus spot of the intracavity pulse on the SESAM surface to avoid the long-time irradiation of the laser beam on the same position, thereby solving a series of problems caused by damage to the SESAM and greatly prolonging its usage life. The adjustment of the rectangular prism in the laser cavity does not break the stable continuous wave (CW) mode-locked condition. The laser generates a stable picosecond pulse sequence at 1064 nm with an output power of 3.6 W and a pulse width of 14 ps. The instabilities of the output power and the pulse width are 1.77% and 4.5%, respectively.
基金Supported by the National Natural Science Foundation of China under Grant No.60078011in part by an Open Project of the National Laboratory of Solid State Microstructure,Nanjing University.
文摘A maximum of 310mW average output power at 355nm has been obtained by extracavity frequency tripling with a BBO crystal in a Q-switched Nd:YV04 laser with 11.2 W of laser diode pump power. The single pass frequency conversion efficiency (infrared-to-ultraviolet) is 14.3%. The power stability of the ultraviolet laser is better than 1% in 30min.
文摘In this work, the thermal characterization of continuously pumped passively Q-switched laser is quantitatively represented. The system under investigation is end-pumped Yb:YAG passively Q-switched by Cr4+:YAG as saturable absorber. The rate equations describing the dynamics of laser action are numerically solved simultaneously with the temperature conductivity heat equation to depict the transient temperature distribution. The study has been performed in the cylindrical coordinates to characterize the temperature distribution in the axial and radial directions. The thermal transient time in both directions as well as the thermal focal length are calculated. The temporal behavior of the temperature distribution has been illustrated in a 3-dimensional diagram.
基金supported by the Research Project of Aerospace Information Research Institute,Chinese Academy of Sciences (Grant Nos.E1Z1D101 and E2Z2D101)the Project of Chinese Academy of Sciences (Grant No.E33310030D)the Guangzhou Basic and Applied Basic Research Foundation (Grant Nos.2023A04J0336 and 2023A04J0021).
文摘A 60-mW solid-state deep ultraviolet(DUV)laser at 193 nm with narrow linewidth is obtained with two stages of sum frequency generation in LBO crystals.The pump lasers,at 258 and 1553 nm,are derived from a homemade Yb-hybrid laser employing fourth-harmonic generation and Er-doped fiber laser,respectively.The Yb-hybrid laser,finally,is power scaling by a 2 mm×2 mm×30 mm Yb:YAG bulk crystal.Accompanied by the generated 220-mW DUV laser at 221 nm,the 193-nm laser delivers an average power of 60 mW with a pulse duration of 4.6 ns,a repetition rate of 6 kHz,and a linewidth of∼640 MHz.To the best of our knowledge,this is the highest power of 193-and 221-nm laser generated by an LBO crystal ever reported as well as the narrowest linewidth of 193-nm laser by it.Remarkably,the conversion efficiency reaches 27%for 221 to 193 nm and 3%for 258 to 193 nm,which are the highest efficiency values reported to date.We demonstrate the huge potential of LBO crystals for producing hundreds of milliwatt or even watt level 193-nm laser,which also paves a brand-new way to generate other DUV laser wavelengths.
文摘This study shows that sulfide solid-state electrolytes,β-Li_(3)PS_(4)and Li_(6)PS_(5)Cl,are flammable solids.Both solid-state electrolytes release sulfur vapor in a dry,oxidizing environment at elevated temperature<300℃.Sulfur vapor is a highly flammable gas,which then auto-ignites to produce a flame.This behavior suggests that an O_(2)-S gas-gas reaction mechanism may contribute to all-solid-state battery thermal runaway.To improve all-solid-state battery safety,current work focuses on eliminating the O_(2)source by changing the cathode active material.The conclusion of this study suggests that all-solidstate battery safety can also be realized by the development of solid-state electrolytes with less susceptibility to sulfur volatilization.
基金supported by the National Natural Science Foundation of China(Nos.22171102 and 22090044)the National Key R&D Program of China(Nos.2021YFF0500502 and 2023YFA1506304)+2 种基金the Jilin Province Science and Technology Development Plan(No.20230101024JC)the"Medicine+X"crossinnovation team of Bethune Medical Department of Jilin University"Leading the Charge with Open Competition"construction project(No.2022JBGS04)the Jilin University Graduate Training Office(Nos.2021JGZ08 and 2022YJSJIP20).
文摘Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.
基金supported by National Science Fund for Distinguished Young Scholars(Grant No.52325206)National Key Research and Development Program of China(Grant No.2021YFF0500600)+3 种基金National Natural Science Foundation of China(Grant Nos.U2001220 and 52203298)Shenzhen Technical Plan Project(Grant Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008,and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(Grant No.SZPR2023006)Shenzhen Science and Technology Program(Grant No.WDZC20231126160733001).
文摘Composite solid electrolytes(CSEs)are considered among the most promising candidates for solid-state batteries.However,their practical application is hindered by low ionic conductivity and a limited lithium-ion transference number,primarily owing to the insufficient mobility of Li+.In this work,we design a heterojunc-tion nanoparticle composed of bimetallic zeolitic imidazolate frameworks(ZIFs)coupled with amorphous tita-nium oxide(TiO_(2)@Zn/Co–ZIF)as a filler to fabricate a composite solid-state electrolyte(PVZT).The amor-phous TiO_(2) coating facilitates salt dissociation through Lewis acid–base interactions with the anions of the lithium salt.Meanwhile,the Zn/Co–ZIF framework not only provides additional selective pathways for Li+transport but also effectively restricts anion migration through its confined pore size.The synergistic effect results in a high room-temperature ionic conductivity(8.8×10^(-4) S·cm^(-1))and a lithium-ion transference number of 0.47 for PVZT.A symmetrical cell using PVZT demonstrates stable Li+deposition/stripping for over 1100 h at a current density of 0.1 mA·cm^(-2).Additionally,a LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/Li full cell using PVZT retains 75.0%of its capacity after 1200 cycles at a 2 C rate.This work offers valuable insights into the design of func-tional fillers for CSEs with highly efficient ion transport.
基金financially supported by the National Natural Science Foundation of China(Nos.22102212 and 22479067).
文摘High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.
文摘Thermally activated delayed fluorescence(TADF)molecules have outstanding potential for applications in organic light-emitting diodes(OLEDs).Due to the lack of systematic studies on the correlation between molecular structure and luminescence properties,TADF molecules are far from meeting the needs of practical applications in terms of variety and number.In this paper,three twisted TADF molecules are studied and their photophysical properties are theoretically predicted based on the thermal vibrational correlation function method combined with multiscale calculations.The results show that all the molecules exhibit fast reverse intersystem crossing(RISC)rates(kRISC),predicting their TADF luminescence properties.In addition,the binding of DHPAzSi as the donor unit with different acceptors can change the dihedral angle between the ground and excited states,and the planarity of the acceptors is positively correlated with the reorganization energy,a property that has a strong influence on the non-radiative process.Furthermore,a decrease in the energy of the molecular charge transfer state and an increase in the kRISC were observed in the films.This study not only provides a reliable explanation for the observed experimental results,but also offers valuable insights that can guide the design of future TADF molecules.
基金This work was supported by the National Key R&D Program of China(2022YFB4102000 and 2022YFA1505100)the NSFC(22472038)the Shanghai Science and Technology Innovation Action Plan(22dz1205500).
文摘Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community.
基金supported by the 261 Project of MIITthe National Natural Science Foundation of China(Nos.52250010,52201242,U23A20574)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.
基金National Natural Science Foundation of China(22322903,52072061)Natural Science Foundation of Sichuan,China(2023NSFSC1914)Beijing National Laboratory for Condensed Matter Physics(2023BNLCMPKF015)。
文摘Solid-state lithium batteries(SSLBs)are regarded as an essential growth path in energy storage systems due to their excellent safety and high energy density.In particular,SSLBs using conversion-type cathode materials have received widespread attention because of their high theoretical energy densities,low cost,and sustainability.Despite the great progress in research and development of SSLBs based on conversiontype cathodes,their practical applications still face challenges such as blocked ionic-electronic migration pathways,huge volume change,interfacial incompatibility,and expensive processing costs.This review focuses on the advantages and critical issues of coupling conversion-type cathodes with solid-state electrolytes(SSEs),as well as state-of-the-art progress in various promising cathodes(e.g.,FeS_(2),CuS,FeF_(3),FeF_(2),and S)in SSLBs.Furthermore,representative research on conversion-type solid-state full cells is discussed to offer enlightenment for their practical application.Significantly,the energy density exhibited by the S cathode stands out impressively,while sulfide SSEs and halide SSEs have demonstrated immense potential for coupling with conversion-type cathodes.Finally,perspectives on conversion-type cathodes are provided at the material,interface,composite electrode,and battery levels,with a view to accelerating the development of conversion-type cathodes for high-energy–density SSLBs.