A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viabl...A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viable strategies for implementing anode-free configuration utilizing solid-state electrolytes are briefly reviewed.Then,the remarkable work of Meng et al.on designing an anode-free sodium all-solid-state battery is elucidated.Finally,the significance of Meng’s work is discussed.展开更多
Fluoropolymers promise all-solid-state lithium metal batteries(ASLMBs)but suffer from two critical challenges.The first is the trade-off between ionic conductivity(σ)and lithium anode reactions,closely related to hig...Fluoropolymers promise all-solid-state lithium metal batteries(ASLMBs)but suffer from two critical challenges.The first is the trade-off between ionic conductivity(σ)and lithium anode reactions,closely related to high-content residual solvents.The second,usually consciously overlooked,is the fluoropolymer's inherent instability against alkaline lithium anodes.Here,we propose indium-based metal-organic frameworks(In-MOFs)as a multifunctional promoter to simultaneously address these two challenges,using poly(vinylidene fluoride-hexafluoropropylene)(PVH)as the typical fluoropolymer.In-MOF plays a trio:(1)adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium anodes while retaining their advantages on Li~+transport;(2)forming inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth;(3)reducing PVH crystallinity and promoting Li-salt dissociation.Therefore,the resulting PVH/In-MOF(PVH-IM)showcases excellent electrochemical stability against lithium anodes,delivering a 5550 h cycling at 0.2 m A cm^(-2)with a remarkable cumulative lithium deposition capacity of 1110 m Ah cm^(-2).It also exhibits an ultrahighσof 1.23×10^(-3)S cm^(-1)at 25℃.Moreover,all-solid-state LiFePO_4|PVH-IM|Li full cells show outstanding rate capability and cyclability(80.0%capacity retention after 280 cycles at 0.5C),demonstrating high potential for practical ASLMBs.展开更多
All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the unde...All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance.展开更多
Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy densit...Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.展开更多
Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are co...Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.展开更多
Halide electrolytes,renowned for their excellent electrochemical stability and wide voltage window,exhibit significant potential in the development of high energy density solid-state batteries featuring high voltage c...Halide electrolytes,renowned for their excellent electrochemical stability and wide voltage window,exhibit significant potential in the development of high energy density solid-state batteries featuring high voltage cathode materials.In this study,we present the development and synthesis of a 0.6Li_(2)S-ZrCl_(4)solid electrolyte,demonstrating an ion conductivity of 1.9×10^(–3)S/cm at 25°C.Under a pressure of 500 MPa,the relative density of the electrolyte can reach 97.37%,showcasing its commendable compressibility.0.6Li_(2)S-ZrCl_(4)served as the electrolyte,and we assembled batteries utilizing a LiCoO_(2)(LCO)positive electrode,Li_(9.54)Si_(1.74)P_(1.44)S_(11.7)Cl_(0.3)(LSPSCl)coating,and Li-In negative electrode for laboratory testing.At 25°C,this all-solid-state battery demonstrated an impressive discharge capacity retention rate of86.99%(with a final discharge specific capacity of 110.5 m Ah/g)after 250 cycles at 24 m A/g and 100 MPa stack pressure.Upon substituting the positive electrode material with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)and assembling an all-solid-state battery,it demonstrated a discharge capacity retention rate of 74.17%after200 cycles at 3.6 m A/g and 100 MPa stack pressure in an environment at 25°C(with a final discharge specific capacity of 103.3 m A/g).Our findings hold significant implications for the design of novel superionic conductors,thereby contributing to the advancement of all-solid-state battery technology.展开更多
Dear Editor,Chemotherapy remains ineffective against solid tumors due to their dense extracellular matrix, abnormal vasculature, and high interstitial pressure coalesce to create a barrier to drug penetration and dist...Dear Editor,Chemotherapy remains ineffective against solid tumors due to their dense extracellular matrix, abnormal vasculature, and high interstitial pressure coalesce to create a barrier to drug penetration and distribution. This challenge is even particularly pronounced in pancreatic and brain tumors, where chemotherapy response rates remain dismal.The advent of ultrasonic tumor permeabilization using focused ultrasound and microbubble technology represents a significant breakthrough in research on overcoming drug resistance in solid tumors toward overcoming these barriers and improving outcomes.[1]展开更多
1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the...1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].展开更多
The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic framework...The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.展开更多
Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans t...Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans to start producing SSB EV in the2027-2028timeframe[1].InMay2024,itemergedthattheChi-nesegovernmentplanstoinvestmorethansixbillionCNY(830mil-lion USD)in projects intended to speed up SSB development[2].In June 2024,the automaker Nio(Shanghai,China)began supplying customers with EVs containing“semi-solid-state”batteries-a hybrid technology that could serve as a stepping stone to fully solid versions[3].In September 2024,SAIC Motor(Shanghai,China),China’s largest automobile manufacturer,announced that it would deliver its first SSB-powered vehicles in 2025[4].展开更多
All-solid-state batteries(ASSBs)are pursued due to their potential for better safety and high energy density.However,the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilizat...All-solid-state batteries(ASSBs)are pursued due to their potential for better safety and high energy density.However,the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials(AMs)at high loading.With small amount of solid electrolyte(SE)powder in the cathode,poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs,leading to high tortuosity and limitation of lithium and electron transport pathways.Here,we propose a novel cathode design that can achieve high volumetric energy density of 1258 Wh L^(-1)at high AM content of 85 wt%by synergizing the merits of AM@SE core–shell composite particles with conformally coated thin SE shell prepared from mechanofusion process and small SE particles.The core–shell structure with an intimate and thin SE shell guarantees high ionic conduction pathway while unharming the electronic conduction.In addition,small SE particles play the role of a filler that reduces the packing porosity in the cathode composite electrode as well as between the cathode and the SE separator layer.The systematic demonstration of the optimization process may provide understanding and guidance on the design of electrodes for ASSBs with high electrode density,capacity,and ultimately energy density.展开更多
This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The ...This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The impact of SDG components on the strength and durability of solidified soil was analysed through a series of tests,including unconfined compressive strength,water stability coefficient,water absorption rate,drying-wetting cycles,and shrinkage tests.Furthermore,microstructure characteristics were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).The study shows that the solidified soil has excellent strength and durability when the SDG stabilizer contains 60% GGBGS,10% DG,and 30% CCS.Additionally,increasing the DG content negatively affects the soil's resistance to water.The SDG stabilizer has potential chemical cementitious characteristics and the calcium carbide slag is rich in calcium ions,which undergo an ion exchange reaction with minerals in the soil.These findings offer new ideas for the development of soil stabilizers.展开更多
All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitr...All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitrile rubber(NBR)is primarily used as a binder due to its moderate solubility in non-polar solvents,which exhibites minimal chemical reactivity with sulfide SEs.However,the NBR binder,composed of butadiene and acrylonitrile units with differing polarities,exhibits different chemical compatibility depending on the subtle differences in polarity of solvents.Herein,we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs.Anisole is found to activate the acrylonitrile units,inducing an elongated polymer chain configuration in the binder solution,which gives an opportunity to strongly interact with the solid components of the electrode and the current collector.Consequently,selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode,allowing ASSBs to operate at a lower stacking pressure of 16 MPa.This approach achieves an initial capacity of 480 mAh g^(-1),significantly higher than the 390 mAh g^(-1)achieved with the NBR/toluene binder that has less chemical compatibility.Furthermore,internal stress variations during battery operation are monitored,revealing that the enhanced mechanical properties,achieved through acrylonitrile activation,effectively mitigate internal stress in the graphite/silicon composite anode.展开更多
Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reac...Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reaction times and high energy consumption.In this study,we present a wet process for the synthesis of halogen-rich argyrodite Li_(6-a)PS_(5-a)Cl_(1+a)precursors(LPSCl_(1+a)-P,a=0–0.7)via an energysaving microwave-assisted process.Utilizing vibrational heating,we accelerate the formation of Liargyrodite precursor,even at excessive Cl-ion concentration,which significantly shortens the reaction time compared to traditional methods.After crystallization,we successfully synthesize the Liargyrodite,Li_(5.5)PS_(4.5)Cl_(1.5),which exhibits the superior ionic conductivity(7.8 mS cm^(-1))and low activation energy(0.23 eV)along with extremely low electric conductivity.The Li_(5.5)PS_(4.5)Cl_(1.5)exhibits superior Li compatibility owing to its high reversible striping/plating ability(over 5000 h)and high current density acceptability(1.3 mA cm^(-2)).It also exhibits excellent cycle reversibility and rate capability with NCM622 cathode(148.3 mA h g^(-1)at 1 C for 100 cycles with capacity retention of 85.6%).This finding suggests a potentially simpler and more scalable synthetic route to produce high-performance SEs.展开更多
This work studies the impact of the carbon diffusion on the growth kinetics of austenite and the solute segregation,by utilizing the phase-field(PF)method to simulate the solidification of a Fe-C binary alloy.It is re...This work studies the impact of the carbon diffusion on the growth kinetics of austenite and the solute segregation,by utilizing the phase-field(PF)method to simulate the solidification of a Fe-C binary alloy.It is revealed that increasing the ratio of the carbon diffusion coefficient in solid to that in liquid is advantageous in reducing the solute segregation,and a novel microsegregation model is developed based on the quantitative analysis of the results from PF simulations.The simplified one-dimensional diffusion simulation is employed to analyse the quantitative relationship between the parameters of the proposed microsegregation model and the properties of materials.The universality and reliability of the new microsegregation model are then validated by comparing with the experimental data of various alloy systems.These findings contribute to our comprehension of the fundamental theory of solidification and also provide a potential and promising approach to controlling the solidification microstructure.展开更多
High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high...High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.展开更多
BACKGROUND Endoscopic ultrasound(EUS)is crucial for diagnosing solid pancreatic lesions,especially pancreatic ductal adenocarcinoma(PDAC),a highly aggressive cancer which represents the majority with a prevalence of a...BACKGROUND Endoscopic ultrasound(EUS)is crucial for diagnosing solid pancreatic lesions,especially pancreatic ductal adenocarcinoma(PDAC),a highly aggressive cancer which represents the majority with a prevalence of approximately 85%.AIM To identify EUS features that differentiate PDAC from other lesions such as neuroendocrine tumors(NETs)and helping in the differential diagnosis,by analyzing a large sample of solid pancreatic lesions.METHODS This observational,retrospective,multicenter study analyzed the endosonographic characteristics of 761 patients with a radiological diagnosis of solid pancreatic lesion,who underwent pancreatic EUS for typing and staging with needle biopsies between 2015 and 2023.General patient characteristics(age and sex)and solid lesion features were collected and described,such lesion size(Bmode),vessel involvement(compression or invasion),ductal dilation,lymphadenopathy,echogenicity,echopattern,margin regularity,multifocality,internal vascularization and elastography.Subsequently,a predictive analysis was performed through univariate and multivariate logistic regression to identify predictive features for PDAC or NET diagnoses.RESULTS Our study enrolled 761 patients,predominantly male with a mean age of 68.6.PDACs were generally larger(mean 33 mm×27 mm),often had irregular margins,and displayed significant upstream ductal dilation.Hypoechogenicity was common across malignant lesions.In contrast,NETs were smaller(mean 20 mm×17 mm)and typically had regular margins with multiple lesions.Vascular involvement,although predominant in PDAC,is a common feature of all malignant neoplasms.Multifocality,however,although a rare finding,is more typical of NETs and metastases,and practically absent in the remaining lesions.Predictive analyses showed that ductal dilation and irregular margins were the most significant predictors for PDAC[odds ratio(OR)=5.75 and 3.83],with hypoechogenicity,heterogeneous echopattern and lymphadenopathies also highly significant(OR=3.51,2.56 and 1.99).These features were inversely associated with NETs,with regular margins and absence of ductal involvement or lymphadenopathies(OR=0.24,0.86 and 0.45 respectively),as already shown by the descriptive analysis.Finally,age,despite achieving statistical significance,lacks clinical value given an OR trending towards 1.CONCLUSION This study provides a comprehensive overview of EUS features for solid pancreatic lesions,identifying distinct features like upstream ductal dilation and irregular margins for PDAC vs regular margins for NETs as strong diagnostic predictors.These findings enhance the understanding of pancreatic pathologies,offering valuable insights for improved differential diagnosis and clinical management,especially in complex cases.Further prospective studies could build on these results.展开更多
基金grateful for support from the National Natural Science Foundation of China(Nos.52472247,52172229,21401145)Fundamental Research Funds for the Central Universities(No.104972024KFYjc0079).
文摘A commentary on an anode-free cell design with electrochemically stable sodium borohydride solid electrolyte and pelletized aluminium current collector for sodium all-solid-state batteries is presented.First,the viable strategies for implementing anode-free configuration utilizing solid-state electrolytes are briefly reviewed.Then,the remarkable work of Meng et al.on designing an anode-free sodium all-solid-state battery is elucidated.Finally,the significance of Meng’s work is discussed.
基金the financial support from the 261 Project of MIITNatural Science Foundation of Jiangsu Province(No.BK20240179)。
文摘Fluoropolymers promise all-solid-state lithium metal batteries(ASLMBs)but suffer from two critical challenges.The first is the trade-off between ionic conductivity(σ)and lithium anode reactions,closely related to high-content residual solvents.The second,usually consciously overlooked,is the fluoropolymer's inherent instability against alkaline lithium anodes.Here,we propose indium-based metal-organic frameworks(In-MOFs)as a multifunctional promoter to simultaneously address these two challenges,using poly(vinylidene fluoride-hexafluoropropylene)(PVH)as the typical fluoropolymer.In-MOF plays a trio:(1)adsorbing and converting free residual solvents into bonded states to prevent their side reactions with lithium anodes while retaining their advantages on Li~+transport;(2)forming inorganic-rich solid electrolyte interphase layers to prevent PVH from reacting with lithium anodes and promote uniform lithium deposition without dendrite growth;(3)reducing PVH crystallinity and promoting Li-salt dissociation.Therefore,the resulting PVH/In-MOF(PVH-IM)showcases excellent electrochemical stability against lithium anodes,delivering a 5550 h cycling at 0.2 m A cm^(-2)with a remarkable cumulative lithium deposition capacity of 1110 m Ah cm^(-2).It also exhibits an ultrahighσof 1.23×10^(-3)S cm^(-1)at 25℃.Moreover,all-solid-state LiFePO_4|PVH-IM|Li full cells show outstanding rate capability and cyclability(80.0%capacity retention after 280 cycles at 0.5C),demonstrating high potential for practical ASLMBs.
基金supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(RS-2024-00417730,HRD Program for Industrial Innovation)supported by the Technology Innovation Program(or Industrial Strategic Technology Development Program-Materials&Components Technology Development Program)(20024261),Development of thick film electrodes and cell manufacturing technology for a high-performance lithium iron phosphate battery with energy density of over 200 Wh/kg was funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance.
基金supported by the University of Wollongong,Wollongong,Australiafinancial support from the National Natural Science Foundation of China(22272086)Natural Science Foundation of Sichuan Province(2023NSFSC0009).
文摘Compared to currently commercialized lithium-ion batteries,which use flammable organic liquid electrolytes and low-energy-density graphite anodes,solid-state lithium-metal batteries(SSLMBs)offer enhanced energy density and improved safety,making them promising alternatives for next-generation rechargeable batteries[1].As a crucial component of these batteries,solid-state electrolytes—divided into inorganic solid ceramic electrolytes(SCEs)and organic solid polymer electrolytes(SPEs)—are vital for lithium-ion transport and inhibiting lithium dendrite growth.Among them,SCEs exhibit high ionic conductivity,excellent mechanical properties,and outstanding electrochemical and thermal stability.Nevertheless,their brittleness,interfacial challenges with electrodes,and the requirement for high stacking pressure during battery operation significantly hinder their scalable application.In comparison,SPEs are more favourable for manufacturing due to their flexibility and good interfacial compatibility with electrodes[2].Despite these advantages,SPEs still face significant challenges in achieving practical application.Firstly,typical SPEs,such as poly(ethylene oxide)(PEO),poly(vinylidene fluoride)(PVDF),and poly(ethylene glycol)diacrylate(PEGDA),are characterized by high crystallinity,which causes polymer chains to be tightly packed and rigid.This restricts the segmental motion within the SPEs,resulting in low ionic conductivity.Secondly,compared to lithium ions,anions with large ionic radii and low charge density typically form weaker interactions with the polymer chains,which facilitates their mobility and results in a low lithium-ion transference number(tt).Thirdly,the weak interactions between polymer chains in typical SPEs lead to a low elastic modulus,which in turn compromises their poor mechanical strength.
基金supported by the National Key R&D Program of China(2022YFB3803505)National Natural Scientific Foundation of China(U21A2080&22479009)National Related Project and the Fundamental Research Funds for the Central Universities(FRF-TP-22-01C2)。
文摘Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.
基金financially supported by Natural Science Foundation of Hebei Province(Nos.B2020203037,F2021203097)Science Research Project of Hebei Education Department(No.JZX2024022)National Natural Science Foundation of China(Nos.52022088,51971245)。
文摘Halide electrolytes,renowned for their excellent electrochemical stability and wide voltage window,exhibit significant potential in the development of high energy density solid-state batteries featuring high voltage cathode materials.In this study,we present the development and synthesis of a 0.6Li_(2)S-ZrCl_(4)solid electrolyte,demonstrating an ion conductivity of 1.9×10^(–3)S/cm at 25°C.Under a pressure of 500 MPa,the relative density of the electrolyte can reach 97.37%,showcasing its commendable compressibility.0.6Li_(2)S-ZrCl_(4)served as the electrolyte,and we assembled batteries utilizing a LiCoO_(2)(LCO)positive electrode,Li_(9.54)Si_(1.74)P_(1.44)S_(11.7)Cl_(0.3)(LSPSCl)coating,and Li-In negative electrode for laboratory testing.At 25°C,this all-solid-state battery demonstrated an impressive discharge capacity retention rate of86.99%(with a final discharge specific capacity of 110.5 m Ah/g)after 250 cycles at 24 m A/g and 100 MPa stack pressure.Upon substituting the positive electrode material with LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)and assembling an all-solid-state battery,it demonstrated a discharge capacity retention rate of 74.17%after200 cycles at 3.6 m A/g and 100 MPa stack pressure in an environment at 25°C(with a final discharge specific capacity of 103.3 m A/g).Our findings hold significant implications for the design of novel superionic conductors,thereby contributing to the advancement of all-solid-state battery technology.
文摘Dear Editor,Chemotherapy remains ineffective against solid tumors due to their dense extracellular matrix, abnormal vasculature, and high interstitial pressure coalesce to create a barrier to drug penetration and distribution. This challenge is even particularly pronounced in pancreatic and brain tumors, where chemotherapy response rates remain dismal.The advent of ultrasonic tumor permeabilization using focused ultrasound and microbubble technology represents a significant breakthrough in research on overcoming drug resistance in solid tumors toward overcoming these barriers and improving outcomes.[1]
文摘1.Introduction.The ever-increasing demands for high-energy-density power supply systems have driven the rapid development of conventional lithium-ion batteries,of which properties are approaching to the ceiling.In the meantime,the safety of lithium-ion batteries also grabs more attention as their wide application in consumer electronics and electric vehicles.The safety of battery system can be enhanced inherently by replacing the flammable liquid electrolytes with inorganic solid electrolytes,which makes solid-state battery one of the most promising candidates of next-generation energy storage systems[1-3].Additionally,the improvements in energy density are foreseen as solid electrolytes enable lithium metal anode[4-11]and high-voltage cathodes[12-15].
基金supported by the National Natural Science Foundation of China(Nos.52374302 and 51874099)the Natural Science Foundation of Fujian Province’s Key Project(No.2021J02031)+1 种基金support from the open fund from Academy of Carbon Neutrality of Fujian Normal University(No.TZH_(2)022-06)We also thank the Undergraduate Training Programs for Innovation and Entrepreneurship(No.cxx1-2024363)。
文摘The widespread application of solid-state polymer electrolytes(SPEs)is impeded due to their limited ionic conductivity,narrow electrochemical window and lithium dendrite problem.In this work,Mg-metal-organic frameworks(MOF)is incorporated into a polyethylene oxide(PEO)-based polymer solid electrolyte,leading to the insitu formation of LiF and other compounds at the electrolyte interface.This modification significantly improves lithium-ion transport capabilities and regulates lithium deposition behavior,suppressing the formation of lithium dendrites.
文摘Recent developments suggest that the race to power electric vehicles(EV)withsolid-statebatteries(SSB)hasgainedmomentum.In January 2024,Toyota Motor Corporation(Toyota City,Japan)confirmed its previously stated plans to start producing SSB EV in the2027-2028timeframe[1].InMay2024,itemergedthattheChi-nesegovernmentplanstoinvestmorethansixbillionCNY(830mil-lion USD)in projects intended to speed up SSB development[2].In June 2024,the automaker Nio(Shanghai,China)began supplying customers with EVs containing“semi-solid-state”batteries-a hybrid technology that could serve as a stepping stone to fully solid versions[3].In September 2024,SAIC Motor(Shanghai,China),China’s largest automobile manufacturer,announced that it would deliver its first SSB-powered vehicles in 2025[4].
基金supported by the Technology Innovation Program(Grant no.20009985,Grant no.20026752)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘All-solid-state batteries(ASSBs)are pursued due to their potential for better safety and high energy density.However,the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials(AMs)at high loading.With small amount of solid electrolyte(SE)powder in the cathode,poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs,leading to high tortuosity and limitation of lithium and electron transport pathways.Here,we propose a novel cathode design that can achieve high volumetric energy density of 1258 Wh L^(-1)at high AM content of 85 wt%by synergizing the merits of AM@SE core–shell composite particles with conformally coated thin SE shell prepared from mechanofusion process and small SE particles.The core–shell structure with an intimate and thin SE shell guarantees high ionic conduction pathway while unharming the electronic conduction.In addition,small SE particles play the role of a filler that reduces the packing porosity in the cathode composite electrode as well as between the cathode and the SE separator layer.The systematic demonstration of the optimization process may provide understanding and guidance on the design of electrodes for ASSBs with high electrode density,capacity,and ultimately energy density.
基金Funded by the National Key R&D Program of China (No. 2022YFC3803405)the China State Construction Key Laboratory Project (No. ZJXJ-PT-2022-14)。
文摘This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The impact of SDG components on the strength and durability of solidified soil was analysed through a series of tests,including unconfined compressive strength,water stability coefficient,water absorption rate,drying-wetting cycles,and shrinkage tests.Furthermore,microstructure characteristics were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).The study shows that the solidified soil has excellent strength and durability when the SDG stabilizer contains 60% GGBGS,10% DG,and 30% CCS.Additionally,increasing the DG content negatively affects the soil's resistance to water.The SDG stabilizer has potential chemical cementitious characteristics and the calcium carbide slag is rich in calcium ions,which undergo an ion exchange reaction with minerals in the soil.These findings offer new ideas for the development of soil stabilizers.
基金supported by the Technology Innovation Program(00404166,Development of thin-film coating current collector and aqueous binder to enhance the adhesion and conductivity properties on the silicon-rich anode)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea),the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.2710024139)the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No.22-CM-FC-20。
文摘All-solid-state batteries(ASSBs)with sulfide-type solid electrolytes(SEs)are gaining significant attention due to their potential for the enhanced safety and energy density.In the slurry-coating process for ASSBs,nitrile rubber(NBR)is primarily used as a binder due to its moderate solubility in non-polar solvents,which exhibites minimal chemical reactivity with sulfide SEs.However,the NBR binder,composed of butadiene and acrylonitrile units with differing polarities,exhibits different chemical compatibility depending on the subtle differences in polarity of solvents.Herein,we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs.Anisole is found to activate the acrylonitrile units,inducing an elongated polymer chain configuration in the binder solution,which gives an opportunity to strongly interact with the solid components of the electrode and the current collector.Consequently,selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode,allowing ASSBs to operate at a lower stacking pressure of 16 MPa.This approach achieves an initial capacity of 480 mAh g^(-1),significantly higher than the 390 mAh g^(-1)achieved with the NBR/toluene binder that has less chemical compatibility.Furthermore,internal stress variations during battery operation are monitored,revealing that the enhanced mechanical properties,achieved through acrylonitrile activation,effectively mitigate internal stress in the graphite/silicon composite anode.
基金supported by the Basic Science Research Program through National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(RS-2022-NR070534)supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(2710024139)。
文摘Li-argyrodites are promising solid electrolytes(SEs)for solid-state Li-ion batteries(SSLBs),but their large-scale industrial application remains a challenge.Conventional synthesis methods for SEs suffer from long reaction times and high energy consumption.In this study,we present a wet process for the synthesis of halogen-rich argyrodite Li_(6-a)PS_(5-a)Cl_(1+a)precursors(LPSCl_(1+a)-P,a=0–0.7)via an energysaving microwave-assisted process.Utilizing vibrational heating,we accelerate the formation of Liargyrodite precursor,even at excessive Cl-ion concentration,which significantly shortens the reaction time compared to traditional methods.After crystallization,we successfully synthesize the Liargyrodite,Li_(5.5)PS_(4.5)Cl_(1.5),which exhibits the superior ionic conductivity(7.8 mS cm^(-1))and low activation energy(0.23 eV)along with extremely low electric conductivity.The Li_(5.5)PS_(4.5)Cl_(1.5)exhibits superior Li compatibility owing to its high reversible striping/plating ability(over 5000 h)and high current density acceptability(1.3 mA cm^(-2)).It also exhibits excellent cycle reversibility and rate capability with NCM622 cathode(148.3 mA h g^(-1)at 1 C for 100 cycles with capacity retention of 85.6%).This finding suggests a potentially simpler and more scalable synthetic route to produce high-performance SEs.
基金supported by the National Science and Technology Major Project(Grant No.J2019-VI-0019-0134)the National Natural Science Foundation of China(Grant No.52203301)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021TQ0335)the Liaoning Province Science and Technology Plan Joint Fund(Doctoral Research Initiation Project)(Grant No.2024-BSLH-195).
文摘This work studies the impact of the carbon diffusion on the growth kinetics of austenite and the solute segregation,by utilizing the phase-field(PF)method to simulate the solidification of a Fe-C binary alloy.It is revealed that increasing the ratio of the carbon diffusion coefficient in solid to that in liquid is advantageous in reducing the solute segregation,and a novel microsegregation model is developed based on the quantitative analysis of the results from PF simulations.The simplified one-dimensional diffusion simulation is employed to analyse the quantitative relationship between the parameters of the proposed microsegregation model and the properties of materials.The universality and reliability of the new microsegregation model are then validated by comparing with the experimental data of various alloy systems.These findings contribute to our comprehension of the fundamental theory of solidification and also provide a potential and promising approach to controlling the solidification microstructure.
基金supported by the A*STAR MTC Programmatic Project(No.M23L9b0052)the Indonesia-NTU Singapore Institute of Research for Sustainability and Innovation(INSPIRASI)(No.6635/E3/KL.02.02/2023)+2 种基金the Singapore NRF Singapore-China Flagship Program(No.023740-00001)the National Natural Science Foundation of China(Nos.11975043 and 11475300)the China Scholarship Council(No.202306460087)。
文摘High-voltage solid-state lithium-ion batteries(SSLIBs)have attracted considerable research attention in recent years due to their high-energy-density and superior safety characteristics.However,the integration of high-voltage cathodes with solid electrolytes(SEs)presents multiple challenges,including the formation of high-impedance layers from spontaneous chemical reactions,electrochemical instability,insufficient interfacial contact,and lattice expansion.These issues significantly impair battery performance and potentially lead to battery failure,thus impeding the commercialization of high-voltage SSLIBs.The incorporation of fluorides,known for their robust bond strength and high free energy of formation,has emerged as an effective strategy to address these challenges.Fluorinated electrolytes and electrode/electrolyte interfaces have been demonstrated to significantly influence the reaction reversibility/kinetics,safety,and stability of rechargeable batteries,particularly under high voltage.This review summarizes recent advancements in fluorination treatment for high-voltage SEs,focusing on solid polymer electrolytes(SPEs),inorganic solid electrolytes(ISEs),and composite solid electrolytes(CSEs),along with the performance enhancements these strategies afford.This review aims to provide a comprehensive understanding of the structure-property relationships,the characteristics of fluorinated interfaces,and the application of fluorinated SEs in high-voltage SSLIBs.Further,the impacts of residual moisture and the challenges of fluorinated SEs are discussed.Finally,the review explores potential future directions for the development of fluorinated SSLIBs.
基金Supported by the Italian Ministry of Health-Current research IRCCS(Funds Dedicated to the Research of the Gastroenterology and Digestive Endoscopy Unit,Fondazione IRCCS Ca’Granda,Ospedale Maggiore Policlinico,Milano).
文摘BACKGROUND Endoscopic ultrasound(EUS)is crucial for diagnosing solid pancreatic lesions,especially pancreatic ductal adenocarcinoma(PDAC),a highly aggressive cancer which represents the majority with a prevalence of approximately 85%.AIM To identify EUS features that differentiate PDAC from other lesions such as neuroendocrine tumors(NETs)and helping in the differential diagnosis,by analyzing a large sample of solid pancreatic lesions.METHODS This observational,retrospective,multicenter study analyzed the endosonographic characteristics of 761 patients with a radiological diagnosis of solid pancreatic lesion,who underwent pancreatic EUS for typing and staging with needle biopsies between 2015 and 2023.General patient characteristics(age and sex)and solid lesion features were collected and described,such lesion size(Bmode),vessel involvement(compression or invasion),ductal dilation,lymphadenopathy,echogenicity,echopattern,margin regularity,multifocality,internal vascularization and elastography.Subsequently,a predictive analysis was performed through univariate and multivariate logistic regression to identify predictive features for PDAC or NET diagnoses.RESULTS Our study enrolled 761 patients,predominantly male with a mean age of 68.6.PDACs were generally larger(mean 33 mm×27 mm),often had irregular margins,and displayed significant upstream ductal dilation.Hypoechogenicity was common across malignant lesions.In contrast,NETs were smaller(mean 20 mm×17 mm)and typically had regular margins with multiple lesions.Vascular involvement,although predominant in PDAC,is a common feature of all malignant neoplasms.Multifocality,however,although a rare finding,is more typical of NETs and metastases,and practically absent in the remaining lesions.Predictive analyses showed that ductal dilation and irregular margins were the most significant predictors for PDAC[odds ratio(OR)=5.75 and 3.83],with hypoechogenicity,heterogeneous echopattern and lymphadenopathies also highly significant(OR=3.51,2.56 and 1.99).These features were inversely associated with NETs,with regular margins and absence of ductal involvement or lymphadenopathies(OR=0.24,0.86 and 0.45 respectively),as already shown by the descriptive analysis.Finally,age,despite achieving statistical significance,lacks clinical value given an OR trending towards 1.CONCLUSION This study provides a comprehensive overview of EUS features for solid pancreatic lesions,identifying distinct features like upstream ductal dilation and irregular margins for PDAC vs regular margins for NETs as strong diagnostic predictors.These findings enhance the understanding of pancreatic pathologies,offering valuable insights for improved differential diagnosis and clinical management,especially in complex cases.Further prospective studies could build on these results.