期刊文献+
共找到41,742篇文章
< 1 2 250 >
每页显示 20 50 100
On the Occurrence of Different Classes of Solar Flares during the Solar Cycles 23 and 24
1
作者 Longo Wilfried Sanon Wendpuiré Ousmane Compaoré +1 位作者 Somaïla Koala Jean Louis Zerbo 《Journal of High Energy Physics, Gravitation and Cosmology》 2025年第1期28-38,共11页
In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a to... In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time. 展开更多
关键词 solar Flare solar Cycle solar Cycle Phase solar Flare Class OCCURRENCE
在线阅读 下载PDF
Stronger together: perovskite/silicon tandem solar cells 被引量:1
2
作者 Shenghan Wu Shengqiang Ren +1 位作者 Cong Chen Dewei Zhao 《Journal of Semiconductors》 2025年第5期5-7,共3页
Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell ... Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell industry has experienced unprecedented development. The full utilization of solar energy resources remains an urgent issue to be addressed. 展开更多
关键词 carbon neutrality renewable resource perovskite silicon tandem solar cells solar energy carbon peak global energy shortage problem solar cell
在线阅读 下载PDF
The evolution of integrated perovskite-organic solar cells: from early challenges to cutting-edge material innovations 被引量:1
3
作者 Zia Ur Rehman Francesco Lamberti Zhubing He 《Journal of Semiconductors》 2025年第5期30-46,共17页
Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with... Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with a simplified architecture. However, challenges such as limited charge mobility in organic bulk heterojunction(BHJ) layers, and energy-level mismatch at the perovskite/BHJ interface still sustain. Recent advancements in non-fullerene acceptors(NFAs), interfacial engineering, and emerging materials have improved charge transfer/transport, and overall power conversion efficiency(PCE) of IPOSCs.This review explores key developments in IPOSCs, focusing on low-bandgap materials for near-infrared absorption, energy alignment optimization, and strategies to enhance photocurrent density and device performance. Future innovations in material selection and device architecture will be crucial for further improving the efficiency of IPOSCs, bringing them closer to practical application in next-generation photovoltaic technologies. 展开更多
关键词 perovskite solar cells organic bulk heterojunction solar cells integrated perovskite-organic solar cells DONOR ACCEPTOR
在线阅读 下载PDF
Evaluating Dying Efficiency and Energy Performance of a Hybrid Solar Dryer with Natural,Forced,and Hybrid Convection Modes for Tomatoes
4
作者 Sadaf Gul Unar Shoaib Ahmed Khatri +3 位作者 Nayyar Hussain Mirjat Muhammad Faraz Arain Syed Rafay Ahmed Zaidi Laveet Kumar 《Frontiers in Heat and Mass Transfer》 2025年第2期479-505,共27页
This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues o... This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility. 展开更多
关键词 solar drying natural convection forced convection hybrid solar dryer direct solar dryer
在线阅读 下载PDF
Space solar cells with down-conversion quantum dots
5
作者 CHEN Zijian ZHONG Yanhua +3 位作者 SI Meng WANG Jiayi LI Heng LI Wenhua 《Optoelectronics Letters》 2025年第7期413-418,共6页
Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cell... Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cells to specific monochromatic light,and found that QDs can effectively improve the photoelectric conversion efficiency(PCE)in the ultraviolet(UV)band by comparison.Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5(AM1.5)and air-mass 0(AM0)spectra.The experimental results show that because the absorption band of QDs is in the UV region,the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs.The research results show the technical route of space solar cells with down-conversion mechanism,and put forward an important direction for the application of space solar photovoltaic(PV)technology,and have a good application prospect. 展开更多
关键词 photoelectric conversion efficiency photoelectric properties qd solar cells solar cellsfollowing down conversion quantum dots photoelectric conversion efficiency pce modulate solar spectrum quantum dots qds can
原文传递
Embedded solar adaptive optics telescope:achieving compact integration for high-efficiency solar observations
6
作者 Naiting Gu Hao Chen +11 位作者 Ao Tang Xinlong Fan Carlos Quintero Noda Yawei Xiao Libo Zhong Xiaosong Wu Zhenyu Zhang Yanrong Yang Zao Yi Xiaohu Wu Linhai Huang Changhui Rao 《Opto-Electronic Advances》 2025年第5期60-74,共15页
Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess... Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities. 展开更多
关键词 embedded solar adaptive optics telescope(ESAOT) Hartmann-Shack full-wavefront sensor(HS f-WFS) deformable secondary mirror(DSM) high-resolution solar observations solar telescopes
在线阅读 下载PDF
Manipulation strategy of cation inhomogeneity in perovskite solar cells 被引量:1
7
作者 Jiale Sun Xuxia Shai +6 位作者 Weitao chen Shenchao Li Jinlan He Xinxing Liu Dongmei He Yue Yu Jiangzhao Chen 《Journal of Semiconductors》 2025年第5期9-12,共4页
In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-c... In recent years, the research advancements have high-lighted the critical role of the A-site cation in determining the optoelectronic and physicochemical properties of organicinorganic lead halide perovskites. Mixed-cation perovskites(MCPs) have been extensively used as absorber thin films in perovskite solar cells(PSCs), achieving high power conversion efficiencies(PCE) over 26%^([1, 2]). 展开更多
关键词 cation inhomogeneity perovskite solar cells pscs perovskite solar cells absorber thin films mixed cation perovskites organicinorganic lead halide perovskites power conversion efficiency
在线阅读 下载PDF
Interface energetics in organic and perovskite semiconductor solar cells 被引量:1
8
作者 Shaobing Xiong Mats Fahlman Qinye Bao 《Journal of Semiconductors》 2025年第5期14-18,共5页
Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy... Improving the quality of life for Earth's growing population is a complex task that requires the development of new technologies and materials. Perhaps the biggest challenge is access to clean and renewable energy sources that can drive a sustainable future. Photovoltaics, today mainly represented by silicon-based solar cells, convert solar energy into electricity and is already an important component in the renewable energy portfolio. 展开更多
关键词 access clean renewable energy sources perovskite solar cells development new technologies materials renewable energy portfolio organic solar cells clean energy improving quality life renewable energy
在线阅读 下载PDF
Hemispheric prediction of solar cycles 25 and 26 from multivariate sunspot time-series data via Informer models 被引量:1
9
作者 Jie Cao Tingting Xu +6 位作者 Linhua Deng Xueliang Zhou Xinhua Zhao Nanbin Xiang Fuyu Li Miao Wan Weihong Zhou 《Astronomical Techniques and Instruments》 2025年第1期16-26,共11页
Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learnin... Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum. 展开更多
关键词 solar magnetic fields solar cycle Deep learning
在线阅读 下载PDF
Minimizing tin(Ⅱ) oxidation using ethylhydrazine oxalate for high-performance all-perovskite tandem solar cells 被引量:1
10
作者 Jianhua Zhang Xufeng Liao +9 位作者 Weisheng Li Yutian Tian Qinyang Huang Yitong Ji Guotang Hu Qingguo Du Wenchao Huang Donghoe Kim Yi-Bing Cheng Jinhui Tong 《Journal of Semiconductors》 2025年第5期88-94,共7页
All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) ... All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) perovskite solar cells(PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn^(2+) oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate(EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn^(2+) and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin-lead PSCs reached a power conversion efficiency(PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn-Pb PSCs. 展开更多
关键词 mixed tin–lead perovskite solar cells ethylhydrazine oxalate Sn^(2+)oxidation all-perovskite tandem solar cells
在线阅读 下载PDF
Solar cycles during the seventeenth century revealed by equatorial aurora records
11
作者 Yong Wei LiMei Yan 《Earth and Planetary Physics》 EI CAS 2025年第1期182-187,共6页
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al... Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses. 展开更多
关键词 solar cycle Maunder Minimum solar activity red equatorial aurora West Pacific geomagnetic anomaly
在线阅读 下载PDF
Probing Solar Polar Regions
12
作者 DENG Yuanyong TIAN Hui +45 位作者 JIANG Jie YANG Shuhong LI Hao CAMERON Robert GIZON Laurent HARRA Louise WIMMER-SCHWEINGRUBER Robert F AUCHÈRE Frédéric BAI Xianyong BELLOT RUBIO Luis CHEN Linjie CHEN Pengfei CHITTA Lakshmi Pradeep DAVIES Jackie FAVATA Fabio FENG Li FENG Xueshang GAN Weiqun HASSLER Don HE Jiansen HOU Junfeng HOU Zhenyong JIN Chunlan LI Wenya LIN Jiaben NANDY Dibyendu PANT Vaibhav ROMOLI Marco SAKAO Taro KRISHNA PRASAD Sayamanthula SHEN Fang SU Yang TORIUMI Shin TRIPATHI Durgesh WANG Linghua WANG Jingjing XIA Lidong XIONG Ming YAN Yihua YANG Liping YANG Shangbin ZHANG Mei ZHOU Guiping ZHU Xiaoshuai WANG Jingxiu WANG Chi 《空间科学学报》 北大核心 2025年第4期913-942,共30页
The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling sola... The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind,ultimately being vital in controlling solar activities and driving space weather.Despite numerous efforts to explore these regions,to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane,leaving their behavior and evolution poorly understood.This observation gap has left three top-level scientific questions unanswered:How does the solar dynamo work and drive the solar magnetic cycle?What drives the fast solar wind?How do space weather processes globally originate from the Sun and propagate throughout the solar system?The Solar Polarorbit Observatory(SPO)mission,a solar polar exploration spacecraft,is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes.In order to achieve its scientific goals,SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere,to observe the Sun in the extreme ultraviolet,X-ray,and radio wavelengths,to image the corona and the heliosphere up to 45 R_(s),and to perform in-situ detection of magnetic fields,and low-and high-energy particles in the solar wind.The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle,providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind,and providing observational constraints for improving our ability to model and predict the three-dimensional(3D)structures and propagation of space weather events. 展开更多
关键词 SUN Space exploration solar magnetic cycle solar wind Space weather
在线阅读 下载PDF
Thermal Efficiency of Indirect Solar Dryer Using Pebbles as Absorber during Cocoa Drying
13
作者 N’Dri Emmanuel Abouanou Théophile Roch Ori +1 位作者 Ekoun Paul Magloire Koffi Prosper Gbaha 《World Journal of Engineering and Technology》 2025年第1期96-118,共23页
The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat sto... The effect of a storage system on drying time and estimation of drying parameters of cocoa beans using an indirect solar dryer with a sensible heat energy storage system (stones which act as both absorber and heat storage media) is the main subject of this article. This dryer, which uses stones as storage material and is made of wood and plywood, was used to dry a quantity of 5 kg of fermented cocoa beans. The drying parameters for the drying curves and the drying efficiency of cocoa beans were established and studied. The drying curves were modelled from semi-empirical models. The results showed that the moisture of cocoa beans decreased from 60% to 7% in wet basis. With a solar collector and drying efficiency of 40% and 34%, respectively. And this with a maximum average difference temperature between the drying air and the ambient temperature of 13.25˚C day or night. The best concordances are obtained with R2 values of 0.9983, 0.9843, 0.9813 and 0.9837 respectively from the models of Hii, Jena and Das, Demir et al. and Alibas. 展开更多
关键词 Cocoa Beans Indirect solar Dryer Heat Storage Drying Curve solar Energy
在线阅读 下载PDF
A Conceptual Model for Improving Perovskite Solar Cells Efficiency Using Machine Learning
14
作者 Weam M. Binjumah 《International Journal of Intelligence Science》 2025年第1期1-9,共9页
Solar cells made from perovskites have experienced rapid development as examples of third-generation solar cells in recent years. The traditional trial-and-error method is inefficient, and the search space is incredib... Solar cells made from perovskites have experienced rapid development as examples of third-generation solar cells in recent years. The traditional trial-and-error method is inefficient, and the search space is incredibly large. This makes developing advanced perovskite materials, as well as high conversion efficiencies and stability of perovskite solar cells (PSCs), a challenging task. A growing number of data-driven machine learning (ML) applications are being developed in the materials science field, due to the availability of large databases and increased computing power. There are many advantages associated with the use of machine learning to predict the properties of potential perovskite materials, as well as provide additional knowledge on how these materials work to fast-track their progress. Thus, the purpose of this paper is to develop a conceptual model to improve the efficiency of a perovskite solar cell using machine learning techniques in order to improve its performance. This study relies on the application of design science as a method to conduct the research as part of the study. The developed model consists of six phases: Data collection and preprocessing, feature selection and engineering, model training and evaluation, performance assessment, optimization and fine-tuning, and deployment and application. As a result of this model, there is a great deal of promise in advancing the field of perovskite solar cells as well as providing a basis for developing more efficient and cost-effective solar energy technologies in the future. 展开更多
关键词 Perovskite solar Cell Machine Learning solar Energy Design Science Research
在线阅读 下载PDF
Reliability Analysis of a 2D Model of a Solar Still Developed Using Comsol® Multiphysics
15
作者 Manampy Randrianantenaina Tsiry Angelos Andriamanampisoa +3 位作者 Mino Patricia Randrianarison Karl Zimmermann Harry Chaplin Edouard Andrianarison 《Open Journal of Modelling and Simulation》 2025年第1期20-50,共31页
Solar stills represent a promising solution for desalinating saline waters, providing a sustainable alternative in regions with limited access to drinking water. This study evaluates the reliability of a two-dimension... Solar stills represent a promising solution for desalinating saline waters, providing a sustainable alternative in regions with limited access to drinking water. This study evaluates the reliability of a two-dimensional (2D) numerical model of a solar still, developed using COMSOL® Multiphysics software, focusing on a passive cascading device called “Pano Rano.” Two physical prototypes were constructed: one with a standard concrete basin and the other with acrylic plastic. The simulations revealed significant differences in theoretical yield based on the material used. With a radiation of 1200 W/m2, the acrylic prototype displayed an evaporation of 4455.53 mL/m2 and a production of 2925.98 mL/m2 of distilled water, while the concrete model showed an evaporation of 2109.95 mL/m2 and produced 1383.93 mL/m2 of distilled water. The results indicate that evaporation significantly exceeds condensation, highlighting an underutilized evaporation potential. The evaluation of the numerical model’s performance against experimental results was conducted using the mean squared error (MSE) and the coefficient of determination (R2). The best performance was observed in summer (MSE of 16.24;R2 of 0.95), while winter results were less convincing (MSE of 204.77;R2 of −2.78). This variability underscores the model’s limitations and the need for future research. The study also demonstrates that the choice of basin material significantly influences productivity, with acrylic plastic outperforming concrete in terms of thermal efficiency. 展开更多
关键词 solar Desalination Passive Cascade solar Still Distilled Water Production Pano Rano
在线阅读 下载PDF
A Parametrical Comprehensive Review of Solar Assisted Humidification-Dehumidification Desalination Units
16
作者 Zahrah F.Hussein Abas Ramiar Karima E.Amori 《Frontiers in Heat and Mass Transfer》 2025年第3期765-817,共53页
The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination... The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination systems become essential due to the severe impacts of global warming and water shortages.This problem highlights the need to apply boosted water desalination solutions.Desalination is a capital-intensive process that demands considerable energy,predominantly sourced fromfossil fuels worldwide,posing a significant carbon footprint risk.HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage.Several operational and maintenance concerns are to blame.The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency.These systems comprise a humidifier and dehumidifier,energy foundations for space or process heating and electricity generation,fluid transfer or efficiency enhancement accessories,and measurement-control devices.All technologies that enhance the performance of HDH systems are elucidated in this work.These are utilizing efficient components,renewable energy,heat recovery via multi-effect and multi-stage processes,waste heat-powered,and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps,in addition to exergy and economical analyses.According to the present work,the seawater HDH system is feasible for freshwater generation.Regarding economics and gain output ratio,humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications,but it needs significant refinement.Systemproductivity of fresh water is much higher with integrated solar water heating than with solar air heating.The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump.The suggested changes aim to enhance system and process efficiency,reducing electrical energy consumption and cost-effective,continuous,decentralized freshwater production.This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification. 展开更多
关键词 DESALINATION solar desalination HUMIDIFICATION-DEHUMIDIFICATION energy EXERGY performance solar power
在线阅读 下载PDF
Solar Power Goes Online
17
作者 GE LIJUN 《ChinAfrica》 2025年第7期53-53,共1页
In a village in Shanxi,solar electricity is feeding into the grid thanks to an innovative technique In Nanzhanghe Village,located in Zhangzi District,Changzhi,Shanxi Province,rows of brand-new solar panels glisten und... In a village in Shanxi,solar electricity is feeding into the grid thanks to an innovative technique In Nanzhanghe Village,located in Zhangzi District,Changzhi,Shanxi Province,rows of brand-new solar panels glisten under the sun.The electricity they produce is collected by a new network,then steadily injected into a 10 kV power line after the volt-age is increased. 展开更多
关键词 shanxiprovince nanzhanghevillage powerline solar power solar panels innovative technique VILLAGE grid feeding
原文传递
From Coal to Solar
18
作者 YAN YING WANG RUYING 《China Today》 2025年第6期34-36,共3页
Shanxi,China’s leading coal-mining province,is feeding more green power into the national grid,heralding an era of cleaner and more sustainable energy.AT the national demonstration base of advanced photovoltaic(PV)te... Shanxi,China’s leading coal-mining province,is feeding more green power into the national grid,heralding an era of cleaner and more sustainable energy.AT the national demonstration base of advanced photovoltaic(PV)technology in Datong City,Shangxi Province-the largest coal producer in China,rows upon rows of solar panels glitter in the sunlight,resembling a twinkling blue ocean. 展开更多
关键词 solar green power SHANXI twinkling blue ocean photovoltaic technology solar panels COAL cleaner more sustainable energyat
在线阅读 下载PDF
A Second Tutorial Review of the Solar Power Curve:Applications in Energy Meteorology
19
作者 Dazhi YANG Bai LIU +3 位作者 Hao ZHANG Xiang’ao XIA Yanbo SHEN Martin János MAYER 《Advances in Atmospheric Sciences》 2025年第2期269-296,共28页
The fundamental scientific and engineering knowledge concerning the solar power curve,which maps solar irradiance and other auxiliary meteorological variables to photovoltaic output power,has been gathered and put for... The fundamental scientific and engineering knowledge concerning the solar power curve,which maps solar irradiance and other auxiliary meteorological variables to photovoltaic output power,has been gathered and put forward in the preceding tutorial review.Despite the many pages of that review,it was incomplete in the sense that it did not elaborate on the applications of this very important tool of solar energy meteorology.Indeed,solar power curves are ubiquitously needed in a broad spectrum of solar forecasting and solar resource assessment tasks.Hence,this tutorial review should continue from where it left off and present examples concerning the usage of solar power curves.In a nutshell,this tutorial review,together with the preceding one,should elucidate how surface shortwave radiation data,be they ground-based,satelliteretrieved,or model-output,are bridged to various power system operations via solar power curves. 展开更多
关键词 REVIEW solar power curve model chain solar forecasting resource assessment
在线阅读 下载PDF
Improving Heat Transfer Performance of Flat Plate Water Solar Collectors Using Nanofluids
20
作者 Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 2025年第2期80-89,共10页
This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Div... This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked. 展开更多
关键词 Nusselt number friction factor nanofluids flat plate solar collectors solar energy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部