A meticulous design of the local environment at the interface between active species and the support,aimed at optimizing the adsorption of H_(2)O molecules and BH_(4)^(-)anion,offers an ideal strategy for enhancing hy...A meticulous design of the local environment at the interface between active species and the support,aimed at optimizing the adsorption of H_(2)O molecules and BH_(4)^(-)anion,offers an ideal strategy for enhancing hydrogen generation via Na BH4hydrolysis through dual activation pathways.Theoretical predictions based on d-band center analysis and electron transfer calculations suggest that introducing-OH functional groups induce charge redistribution,enhancing charge concentration on alk-Ti_(3)C_(2)and facilitating the adsorption and activation of dual active species,H2O molecules and BH4-anion.Inspired by these predictions,the optimized alk-Ti_(3)C_(2)/Ru Oxcatalyst demonstrates the highest catalytic activity,achieving a hydrogen generation rate(HGR)of 9468 m L min^(-1)gcat.^(-1).Both experimental data and theoretical analyses confirm that the-OH functional groups promote charge enrichment on alk-Ti_(3)C_(2),optimizing the adsorption of H_(2)O molecules and BH_(4)^(-)anion,and reducing the dissociation energy barrier of the*OH–H-TS intermediate.This dual activation pathways mechanism lowers the activation energy for Na BH4hydrolysis,significantly enhancing the HGR performance.These findings,guided by theoretical insights,establish alk-Ti_(3)C_(2)/Ru Oxas an efficient catalyst for Na BH4hydrolysis and provide a strong foundation for future hydrogen generation catalyst designs.展开更多
In this article,an efficient,simple and environmentally friendly approach to the synthesis of diacetals(diketals) pentaerythritol using SOH-functionalized ionic liquids(ILs) as catalysts was reported.The ILs show high...In this article,an efficient,simple and environmentally friendly approach to the synthesis of diacetals(diketals) pentaerythritol using SOH-functionalized ionic liquids(ILs) as catalysts was reported.The ILs show high catalytic activity and reusability with good to excellent yields of the desired products.Hammett method has been used to determine the acidity order of these ionic liquids and the results are consistent with the catalytic activities observed in acetalization reaction.Maximum product yield of 93%was observed on using[PSPy][OTf]as catalyst and it can be reused at least 8 times without obvious activity loss.展开更多
In this article, series of novel bi-SOaH-functionalized ILs were synthesized using simple, efficient and economic procedure. Hammer method had been used to determine the acidity order of these ionic liquids, and the a...In this article, series of novel bi-SOaH-functionalized ILs were synthesized using simple, efficient and economic procedure. Hammer method had been used to determine the acidity order of these ionic liquids, and the acidifies of bi-SOaH-functionalized ILs were stronger than that of traditional single-SOaH-functionalized ILs. Their catalytic activities in the synthesis of N-(3-phenyl)-3- oxo-1-(phenylpropyl)acetamide were investigated and they were consistent with their acidities.展开更多
[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表...[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。展开更多
基金supported by the Hebei province Natural Science Foundation(No.B2023108012)the Science Research Project of Hebei Education Department(No.BJK2024137)+2 种基金the S&T Program of Xingtai(No.2023ZZ096)the National Natural Science Foundation of China(No.62004143)the Key R&D Program of Hubei Province(No.2022BAA084)。
文摘A meticulous design of the local environment at the interface between active species and the support,aimed at optimizing the adsorption of H_(2)O molecules and BH_(4)^(-)anion,offers an ideal strategy for enhancing hydrogen generation via Na BH4hydrolysis through dual activation pathways.Theoretical predictions based on d-band center analysis and electron transfer calculations suggest that introducing-OH functional groups induce charge redistribution,enhancing charge concentration on alk-Ti_(3)C_(2)and facilitating the adsorption and activation of dual active species,H2O molecules and BH4-anion.Inspired by these predictions,the optimized alk-Ti_(3)C_(2)/Ru Oxcatalyst demonstrates the highest catalytic activity,achieving a hydrogen generation rate(HGR)of 9468 m L min^(-1)gcat.^(-1).Both experimental data and theoretical analyses confirm that the-OH functional groups promote charge enrichment on alk-Ti_(3)C_(2),optimizing the adsorption of H_(2)O molecules and BH_(4)^(-)anion,and reducing the dissociation energy barrier of the*OH–H-TS intermediate.This dual activation pathways mechanism lowers the activation energy for Na BH4hydrolysis,significantly enhancing the HGR performance.These findings,guided by theoretical insights,establish alk-Ti_(3)C_(2)/Ru Oxas an efficient catalyst for Na BH4hydrolysis and provide a strong foundation for future hydrogen generation catalyst designs.
基金supported by National 863 High-Tech Research and Development Program of China(No. 2007AA05Z101)
文摘In this article,an efficient,simple and environmentally friendly approach to the synthesis of diacetals(diketals) pentaerythritol using SOH-functionalized ionic liquids(ILs) as catalysts was reported.The ILs show high catalytic activity and reusability with good to excellent yields of the desired products.Hammett method has been used to determine the acidity order of these ionic liquids and the results are consistent with the catalytic activities observed in acetalization reaction.Maximum product yield of 93%was observed on using[PSPy][OTf]as catalyst and it can be reused at least 8 times without obvious activity loss.
基金the National Natural Science Foundation ofChina(Nos.21003049,21073064)the Fundamental Research Funds for the Central Universities for financial support
文摘In this article, series of novel bi-SOaH-functionalized ILs were synthesized using simple, efficient and economic procedure. Hammer method had been used to determine the acidity order of these ionic liquids, and the acidifies of bi-SOaH-functionalized ILs were stronger than that of traditional single-SOaH-functionalized ILs. Their catalytic activities in the synthesis of N-(3-phenyl)-3- oxo-1-(phenylpropyl)acetamide were investigated and they were consistent with their acidities.
文摘[目的]3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺是具有广谱抑菌活性的化合物,将其研制成优良环保剂型悬浮剂,可为实现田间应用提供技术依据。[方法]采用湿法研磨制备了12种不同配方的悬浮剂,通过质量指标检测确定最佳配方,测定其表面张力及其在黄瓜叶面的动态接触角,并开展了防治黄瓜白粉病田间药效试验。[结果]最佳配方为3-(3′,4′-次甲二氧苯基)-N-正丙基丙烯酰胺40%(折百)、S043%、D4252%、W071%、乙二醇3%、硅酸镁铝0.4%、黄原胶0.12%、B150.12%、消泡剂X600.3%、水补足。此悬浮剂在有效成分0.27 g a.i./L时的表面张力以及在黄瓜叶面的动态接触角均小于对照药剂40%苯醚甲环唑SC,表明其具有良好的润湿性能。在有效成分0.27 g a.i./L下的防效为88.38%,与对照药剂25%嘧菌酯SC 0.20 g a.i./L相当,且对黄瓜安全。[结论]制备悬浮剂为类白色均匀悬浮液,流动性好,粒径合格,悬浮率稳定在98.5%左右,pH为4.09,黏度为452 mPa·s,入水分散性合格,热储、低温及冻融稳定性良好,未出现沉淀,各项指标均达标,对黄瓜白粉病防效优良,具有良好的开发应用前景。
基金国家自然科学基金联合基金项目(U21A20485)浙江省高等教育“十四五”本科教育教学改革项目(jg20220019)+3 种基金浙江省产学合作协同育人项目(202018)浙江大学2023年度本科教学创新实践项目重点项目(202309)浙江省基础公益研究计划项目(LGG22F030008)浙江大学第一批AI For Education系列实证教学研究项目(202402)。