In the article“MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma”(Oncology Research.2019 Jun 21;27(6):691-701,doi:10....In the article“MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma”(Oncology Research.2019 Jun 21;27(6):691-701,doi:10.3727/096504018X15426763753594),the IHC images for CXCL12 and Bcl-2 expressions in adjacent noncancer tissues(NCT)shown in Fig.5E were unintentionally duplicated.And Fig.5A,B was also unintentionally duplicated.These needed corrections to ensure the accuracy and integrity of the data presented.展开更多
BACKGROUND Esophageal cancer(ESCA)poses a significant challenge in oncology because of the limited treatment options and poor prognosis.Therefore,enhancing the therapeutic effects of radiotherapy for ESCA and identify...BACKGROUND Esophageal cancer(ESCA)poses a significant challenge in oncology because of the limited treatment options and poor prognosis.Therefore,enhancing the therapeutic effects of radiotherapy for ESCA and identifying relevant therapeutic targets are crucial for improving both the survival rate and quality of life of patients.AIM To define the role of the transcription factor Snail family transcriptional repressor 1(SNAI1)in ESCA,particularly its regulation of radiosensitivity.METHODS A comprehensive analysis of TCGA data assessed SNAI1 expression in ESCA.Survival curves correlated SNAI1 levels with radiotherapy outcomes.Colony formation assays,flow cytometry,and a xenograft model were used to evaluate tumor radiosensitivity and apoptosis.Western blot validated protein expression,while Chromatin im-munoprecipitation assays examined SNAI1's role in regulating epithelial-mesenchymal transition(EMT).RESULTS SNAI1 expression in ESCA cell lines and clinical specimens emphasizes its central role in this disease.Elevated SNAI1 expression is correlated with unfavorable outcomes in radiotherapy.Downregulation of SNAI1 enhances the sensitivity of ESCA cells to ionizing radiation(IR),resulting in remarkable tumor regression upon IR treatment in vivo.This study underscores the direct involvement of SNAI1 in the regulation of EMT,particularly under IR-induced conditions.Furthermore,inhibiting deacetylation effectively suppresses EMT,suggesting a potential avenue to enhance the response to radiotherapy in ESCA.CONCLUSION This study highlights SNAI1's role in ESCA radiosensitivity,offering prognostic insights and therapeutic strategies to enhance radiotherapy by targeting SNAI1 and modulating EMT processes.展开更多
The giant triton snail Charonia tritonis is a marine large carnivorous gastropoda inhabiting in the Indo-Pacific Ocean.Their splendid and highly organized Charonia tritonis shells are attractive;however few studies ha...The giant triton snail Charonia tritonis is a marine large carnivorous gastropoda inhabiting in the Indo-Pacific Ocean.Their splendid and highly organized Charonia tritonis shells are attractive;however few studies have been conducted on shell ultra-structure and pigmentation.The arrangements of crossed-lamellar structures were distinctive for the giant triton snail shell,showing three layers of mineral structures in the cross-section.The 1st-order and 2nd-order lamellae of the shell were around 10-20μm and the crystals in outer layers intersected at right angles in this species.They were identified as aragonite crystals by Raman scattering,and granular organic matrix were attached to the aragonite mineral phase closely.Furthermore,the dominant Raman spectra from polyene pigments in the shell were characterized at wavenumbers of 1123 cm^(-1)and 1504 cm^(-1),assigned to stretching vibrations of carbon-carbon single(C-C)and double(C=C)bonds,and the polyene chain was confirmed with 11-12 C-C bonds and 12-13 conju-gated C=C bonds.The research will lay a foundation for exploring the relationship between the calcareous shell and the formation of shell color in the giant triton snail.展开更多
【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过...【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过程中的作用仍未知,有待进一步研究。【方法】以秦川牛为研究对象,克隆得到Snail1 CDS区序列,构建Snail1时空表达谱,运用生物信息学软件对其功能结构及靶基因进行预测。进一步,通过RNAi干扰结合CCK8、EdU、细胞流式及实时荧光定量PCR等方法探究Snail1对牛脂肪细胞增殖的影响。【结果】秦川牛Snail1与NCBI公布序列相比存在2处碱基同义突变,其在秦川牛新生牛肺、肾周脂肪、小肠呈现较高丰度表达;而在成年牛中,Snail1在肾周脂肪组织中的表达量最高,背最长肌中的表达量次之,肺脏组织中的表达量最低。生物信息学分析发现,Snail1启动子区存在1个651 bp CpG岛及C/EBP、PPARα等与脂肪生成相关的转录因子结合位点。CKⅠ(Ser92/96)、CKⅡ(Ser25/119,Thr89)、CDK1(Ser13/104/112/119/143/183/214/221)、CDK5(Ser105/107)等多个细胞周期相关激酶可能参与了Snail1蛋白的磷酸化修饰。通过对牛已注释基因启动子区提取、靶基因预测及KEGG动态网络构建发现,成脂相关的MAPK、PI3K-Akt、mTOR等信号通路为Snail1参与脂肪生成相关的潜在节点信号通路。进一步,通过RNAi干扰试验对其功能研究表明,Snail1下调促进了牛前体脂肪细胞的增殖,增加了复制期阳性细胞的比例(P<0.01)且促进了G1/S细胞周期转换。RT-qPCR和Western-blot检测表明,干扰Snail1显著上调了促增殖调控基因CCNB1、CCND2、CDK2、CDK4(P<0.05)和蛋白的表达。【结论】Snail1在新生牛肾周脂肪及成年牛肾周脂肪和背最长肌中表达量相对较高。干扰Snail1促进了牛前体脂肪细胞的增殖、G1/S细胞周期转变和CCNB1、CCND2、CDK2、CDK4等增殖相关基因表达;CKⅠ、CKⅡ、CDK1/5等多个细胞周期相关激酶可能通过磷酸化修饰Snail1蛋白进而参与细胞增殖调控,而MAPK、PI3K-Akt、mTOR等为Snail1影响牛脂肪细胞增殖潜在的关键节点通路。研究结果为进一步探究Snail1参与牛脂肪生成作用机制奠定了基础。展开更多
文摘In the article“MicroRNA-101 Targets CXCL12-Mediated Akt and Snail Signaling Pathways to Inhibit Cellular Proliferation and Invasion in Papillary Thyroid Carcinoma”(Oncology Research.2019 Jun 21;27(6):691-701,doi:10.3727/096504018X15426763753594),the IHC images for CXCL12 and Bcl-2 expressions in adjacent noncancer tissues(NCT)shown in Fig.5E were unintentionally duplicated.And Fig.5A,B was also unintentionally duplicated.These needed corrections to ensure the accuracy and integrity of the data presented.
基金Supported by the National Key R&D Program of China,No.2022YFC2503700 and No.2022YFC2503703the National Health Commission Key Laboratory of Nuclear Technology Medical Transformation(Mianyang Central Hospital),No.2023HYX005.
文摘BACKGROUND Esophageal cancer(ESCA)poses a significant challenge in oncology because of the limited treatment options and poor prognosis.Therefore,enhancing the therapeutic effects of radiotherapy for ESCA and identifying relevant therapeutic targets are crucial for improving both the survival rate and quality of life of patients.AIM To define the role of the transcription factor Snail family transcriptional repressor 1(SNAI1)in ESCA,particularly its regulation of radiosensitivity.METHODS A comprehensive analysis of TCGA data assessed SNAI1 expression in ESCA.Survival curves correlated SNAI1 levels with radiotherapy outcomes.Colony formation assays,flow cytometry,and a xenograft model were used to evaluate tumor radiosensitivity and apoptosis.Western blot validated protein expression,while Chromatin im-munoprecipitation assays examined SNAI1's role in regulating epithelial-mesenchymal transition(EMT).RESULTS SNAI1 expression in ESCA cell lines and clinical specimens emphasizes its central role in this disease.Elevated SNAI1 expression is correlated with unfavorable outcomes in radiotherapy.Downregulation of SNAI1 enhances the sensitivity of ESCA cells to ionizing radiation(IR),resulting in remarkable tumor regression upon IR treatment in vivo.This study underscores the direct involvement of SNAI1 in the regulation of EMT,particularly under IR-induced conditions.Furthermore,inhibiting deacetylation effectively suppresses EMT,suggesting a potential avenue to enhance the response to radiotherapy in ESCA.CONCLUSION This study highlights SNAI1's role in ESCA radiosensitivity,offering prognostic insights and therapeutic strategies to enhance radiotherapy by targeting SNAI1 and modulating EMT processes.
基金funded by the Guangzhou Sci-ence and Technology Project(No.201803020017).
文摘The giant triton snail Charonia tritonis is a marine large carnivorous gastropoda inhabiting in the Indo-Pacific Ocean.Their splendid and highly organized Charonia tritonis shells are attractive;however few studies have been conducted on shell ultra-structure and pigmentation.The arrangements of crossed-lamellar structures were distinctive for the giant triton snail shell,showing three layers of mineral structures in the cross-section.The 1st-order and 2nd-order lamellae of the shell were around 10-20μm and the crystals in outer layers intersected at right angles in this species.They were identified as aragonite crystals by Raman scattering,and granular organic matrix were attached to the aragonite mineral phase closely.Furthermore,the dominant Raman spectra from polyene pigments in the shell were characterized at wavenumbers of 1123 cm^(-1)and 1504 cm^(-1),assigned to stretching vibrations of carbon-carbon single(C-C)and double(C=C)bonds,and the polyene chain was confirmed with 11-12 C-C bonds and 12-13 conju-gated C=C bonds.The research will lay a foundation for exploring the relationship between the calcareous shell and the formation of shell color in the giant triton snail.
文摘【目的】肉牛肌内脂肪沉积与牛肉的风味、多汁性和嫩度密切相关。脂肪沉积过程表现为脂肪细胞的增殖(数量增多)和分化(脂质生成),受到了多基因协同调控。前人研究发现,小鼠中Snail1可以参与肌肉发育和脂质稳态调控,但其在牛脂肪生成过程中的作用仍未知,有待进一步研究。【方法】以秦川牛为研究对象,克隆得到Snail1 CDS区序列,构建Snail1时空表达谱,运用生物信息学软件对其功能结构及靶基因进行预测。进一步,通过RNAi干扰结合CCK8、EdU、细胞流式及实时荧光定量PCR等方法探究Snail1对牛脂肪细胞增殖的影响。【结果】秦川牛Snail1与NCBI公布序列相比存在2处碱基同义突变,其在秦川牛新生牛肺、肾周脂肪、小肠呈现较高丰度表达;而在成年牛中,Snail1在肾周脂肪组织中的表达量最高,背最长肌中的表达量次之,肺脏组织中的表达量最低。生物信息学分析发现,Snail1启动子区存在1个651 bp CpG岛及C/EBP、PPARα等与脂肪生成相关的转录因子结合位点。CKⅠ(Ser92/96)、CKⅡ(Ser25/119,Thr89)、CDK1(Ser13/104/112/119/143/183/214/221)、CDK5(Ser105/107)等多个细胞周期相关激酶可能参与了Snail1蛋白的磷酸化修饰。通过对牛已注释基因启动子区提取、靶基因预测及KEGG动态网络构建发现,成脂相关的MAPK、PI3K-Akt、mTOR等信号通路为Snail1参与脂肪生成相关的潜在节点信号通路。进一步,通过RNAi干扰试验对其功能研究表明,Snail1下调促进了牛前体脂肪细胞的增殖,增加了复制期阳性细胞的比例(P<0.01)且促进了G1/S细胞周期转换。RT-qPCR和Western-blot检测表明,干扰Snail1显著上调了促增殖调控基因CCNB1、CCND2、CDK2、CDK4(P<0.05)和蛋白的表达。【结论】Snail1在新生牛肾周脂肪及成年牛肾周脂肪和背最长肌中表达量相对较高。干扰Snail1促进了牛前体脂肪细胞的增殖、G1/S细胞周期转变和CCNB1、CCND2、CDK2、CDK4等增殖相关基因表达;CKⅠ、CKⅡ、CDK1/5等多个细胞周期相关激酶可能通过磷酸化修饰Snail1蛋白进而参与细胞增殖调控,而MAPK、PI3K-Akt、mTOR等为Snail1影响牛脂肪细胞增殖潜在的关键节点通路。研究结果为进一步探究Snail1参与牛脂肪生成作用机制奠定了基础。