Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources,environmental compatibility,non-toxicity,corrosion resistance,and high hydrogen evolution overpotential.However,...Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources,environmental compatibility,non-toxicity,corrosion resistance,and high hydrogen evolution overpotential.However,the practical application of these batteries is hindered by challenges such as“dead Sn”shedding and hydrogen evolution side reactions.Extensive research has focused on improving the performance of Sn-based batteries.This paper provides a comprehensive review of the recent advancements in Sn-based battery research,including the selection of current collectors,electrolyte optimization,and the development of new cathode materials.The energy storage mechanisms and challenges of Sn-based batteries are discussed.Overall,this paper presents future perspectives of high-performance rechargeable Sn-based batteries and provides valuable guidance for developing Sn-based energy storage technologies.展开更多
The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstru...The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.展开更多
基金supported by the National Natural Science Foundation of China(No.62464010)the Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金the Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)the Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)the Key Laboratory of Artificial Microstructures in Yunnan Higher Education,and the Frontier Research Team of Kunming University 2023.
文摘Sn-based batteries have emerged as an optimal energy storage system owing to their abundant Sn resources,environmental compatibility,non-toxicity,corrosion resistance,and high hydrogen evolution overpotential.However,the practical application of these batteries is hindered by challenges such as“dead Sn”shedding and hydrogen evolution side reactions.Extensive research has focused on improving the performance of Sn-based batteries.This paper provides a comprehensive review of the recent advancements in Sn-based battery research,including the selection of current collectors,electrolyte optimization,and the development of new cathode materials.The energy storage mechanisms and challenges of Sn-based batteries are discussed.Overall,this paper presents future perspectives of high-performance rechargeable Sn-based batteries and provides valuable guidance for developing Sn-based energy storage technologies.
基金supported by the National Natural Science Foundation of China(Nos.52105330,52175307)the Natural Science Foundation of Shandong Province,China(No.ZR2023JQ021)。
文摘The Sn−2Al filler metal was utilized to bond W90 tungsten heavy alloys by the ultrasonic-assisted coating technology in atmospheric environment at 250℃.The effects of ultrasonic power and ultrasonic time on microstructure and interfacial strength of Sn−2Al/W90 interface were investigated.The ultrasound improved the wettability of Sn−2Al filler metal on W90 surface.As the ultrasonic power increased and ultrasonic time increased,the size of Al phase in seam decreased.The maximum value of Sn−2Al/W90 interfacial strength reached 30.1 MPa.Based on the acoustic pressure simulation and bubble dynamics,the intensity of cavitation effect was proportional to ultrasonic power.The generated high temperature and high pressure by cavitation effect reached 83799.6 K and 1.26×10^(14) Pa,respectively.