目的脊髓性肌萎缩(spinal muscular atrophy,SMA)是以脊髓前角运动神经元退化变性为特征的一种常见的常染色体隐性遗传病。SMA的发病率为1/10000,携带者频率为1/50,因此,对于运动神经元存活基因(survival motor neuron,SMN1)缺失携带者...目的脊髓性肌萎缩(spinal muscular atrophy,SMA)是以脊髓前角运动神经元退化变性为特征的一种常见的常染色体隐性遗传病。SMA的发病率为1/10000,携带者频率为1/50,因此,对于运动神经元存活基因(survival motor neuron,SMN1)缺失携带者的检测在遗传咨询中尤为重要。然而SMA位点的重复使得携带者的检测比较困难。该研究的目的是探讨SMN1基因定量分析在SMA携带者检测中的作用。方法应用TaqMan技术的实时荧光定量PCR方法对109例不同临床表型的SMA患者父母和40例正常对照者的SMN1基因拷贝数进行检测。结果①SMA肯定携带者的SMN1基因的平均拷贝数为0.777±0.035,变异系数(CV)值4.5%;正常人(1例,用于验证检测方法的重复性)SMN1基因的平均拷贝数为2.064±0.120,CV值5.8%;②SMA患者父母SMN1基因平均拷贝数为0.798±0.108,CV值13.5%;正常人(38/40,为人群SMN1拷贝数)SMN1基因平均拷贝数为2.106±0.18,CV值8.5%。结论SMA患者父母和正常对照者的SMN1拷贝数的分布不同,前者为1个拷贝的SMN1基因;后者以2个拷贝的SMN1基因为主。因此,SMN1基因定量检测可用于区分大部分正常人和SMA携带者。展开更多
Spinal muscular atrophy(SMA)is an autosomal recessive hereditary neuromuscular disease.Exon 7 and 8 of survival of motor neuron 1(SMN1)gene or only exon 7 homology deletion leads to the failure to produce a full-lengt...Spinal muscular atrophy(SMA)is an autosomal recessive hereditary neuromuscular disease.Exon 7 and 8 of survival of motor neuron 1(SMN1)gene or only exon 7 homology deletion leads to the failure to produce a full-length SMN gene.The copy number of SMN2 gene with high homology of SMN1 affects the degree of disease and was the target gene for targeting therapy,in which splicing silencer in intron 7 was the key to suppress the inclusion of exon 7.In this study,we projected to use CRISPR/Case 9 for the targeted editing of intronic-splicing silencer(ISS)sequence to promote the inclusion of SMN2 exon 7 and increase the production of SMN2 full-length(FL)gene expression.It happens that there was a protospacer adjacent motif(PAM)at one end of the ISS sequence according to the design of sgRNA.The recombinant vector of sgRNA HSMN2 CRISPR/Case 9 was constructed and transfected into HEK293 cells.Sequencing results showed that the ISS sequence could be edited accurately and targeting in the predicted direction,in which deleting small fragments,inserting small amounts and mutation.Quantitative analysis of RT-PCR products by restriction enzyme of DdeI digestion showed that the FL of SMN2 increased by 8%(P<0.05).In the primary cultured chondrocytes of SMA mice,in which sgRNA HSMN2 CRISPR/Case9 recombinant vector transfection could increase the SMN2 FL gene by 23%(P<0.05)and significantly improve SMN protein levels(P<0.05).CRISPR/Case 9 is an effective tool for gene editing and therapy of hereditary diseases,but it is rarely reported in the treatment of SMA diseases.This study shows that CRISPR/Case 9 was first used for the precision target of ISS sequence editing,which can effectively promote the production of SMN2 FL gene expressions,in which there was an important clinical reference value.展开更多
Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Thr...Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are recognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAlP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMN1 and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMA1 patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMNI exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NA1P deletion. The findings of homozygous deletions ofexon 7 and/or exon 8 ofSMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion ofSMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NAIP gene may be a modifying factor for disease severity of SMAI. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA.展开更多
The homozygous loss of the survival motor neuron 1 (SMN1) gene is the primary cause of spinal muscular atrophy (SMA), a neuromuscular degenerative disease. A genetically similar gene, SMN2, which is not functional...The homozygous loss of the survival motor neuron 1 (SMN1) gene is the primary cause of spinal muscular atrophy (SMA), a neuromuscular degenerative disease. A genetically similar gene, SMN2, which is not functionally equivalent in all SMA patients, modifies the clinical SMA phenotypes. We analyzed the methylation levels of 4 CpG islands (CGIs) in SMN2 in 35 Chinese children with SMA by MassARRAY. We found that three CpG units located in CGI 1 (nucleotides (nt) -871, -735) and CGI 4 (nt +999) are significantly hypomethylated in SMA type III compared with type I or II children after receiving Bonferroni correction. In addition to the differentially methylated CpG unit of nt -871, the methylation level of the nt -290/-288/-285 unit was negatively correlated with the expression of SMN2 full-length transcripts (SMN2-fl). In addition, the methylation level at nt +938 was inversely proportional to the ratio of SMN2-fl and lacking exon 7 transcripts (SMN2-A7, fl/A7), and was not associated with the SMN2 transcript levels. Thus, we can conclude that SMN2 methylation may regulate the SMA disease phenotype by modulating its transcription.展开更多
Spinal muscular atrophy(SMA)is a rare hereditary neuromuscular disease with a high lethality rate in infants.Variants in the homologous genes survival of motor neuron(SMN)1 and SMN2 have been reported to be SMA pathog...Spinal muscular atrophy(SMA)is a rare hereditary neuromuscular disease with a high lethality rate in infants.Variants in the homologous genes survival of motor neuron(SMN)1 and SMN2 have been reported to be SMA pathogenic factors.Previous studies showed that a highinclusion rate of SMN2 exon 7 increased SMN expression,which in turn reduced the severity of SMA.The inclusion rate of SMN2 exon 7 was higher in neural tissues than in non-neural tissues.Neuro-oncological ventral antigen(NOVA)is a splicing factor that is specifically and highly expressed in neurons.It plays a key role in nervous system development and in the induction of nervous system diseases.Howeve r,it remains unclear whether this splicing factor affects SMA.In this study,we analyzed the inclusion of SMN2 exon 7 in different tissues in a mouse model of SMA(genotype smn^(-/-)SMN2^(2 tg/0))and litter mate controls(genotype smn^(+/-)SMN2^(2 tg/0)).We found that inclusion level of SMN2 exon 7 was high in the brain and spinal co rd tissue,and that NOVA1 was also highly expressed in nervous system tissues.In addition,SMN2 exon 7 and NOVA1 were expressed synchronously in the central nervous system.We further investigated the effects of NOVA1 on disease and found that the number of neurons in the anterior horn of spinal cord decreased in the mouse model of SMA during postnatal days 1-7,and that NOVA1 expression levels in motor neurons decreased simultaneously as spinal muscular atrophy developed.We also found that in vitro expression of NOVA1 increased the inclusion of SMN2 exon 7 and expression ofthe SMN2 protein in the U87 MG cell line,whereas the opposite was observed when NOVA1 was knocked down.Finally,point mutation and RNA pull-down showed that the UCAC motif in SMN2 exon 7 plays a critical role in NOVA1 binding and promoting the inclusion of exon 7.Moreove r,CA was more essential for the inclusion of exon 7 than the order of Y residues in the motif.Collectively,these findings indicate that NOVA1 intera cts with the UCAC motif in exon 7 of SMN2,there by enhancing inclusion of exon 7 in SMN2,which in turn increases expression of the SMN protein.展开更多
文摘目的脊髓性肌萎缩(spinal muscular atrophy,SMA)是以脊髓前角运动神经元退化变性为特征的一种常见的常染色体隐性遗传病。SMA的发病率为1/10000,携带者频率为1/50,因此,对于运动神经元存活基因(survival motor neuron,SMN1)缺失携带者的检测在遗传咨询中尤为重要。然而SMA位点的重复使得携带者的检测比较困难。该研究的目的是探讨SMN1基因定量分析在SMA携带者检测中的作用。方法应用TaqMan技术的实时荧光定量PCR方法对109例不同临床表型的SMA患者父母和40例正常对照者的SMN1基因拷贝数进行检测。结果①SMA肯定携带者的SMN1基因的平均拷贝数为0.777±0.035,变异系数(CV)值4.5%;正常人(1例,用于验证检测方法的重复性)SMN1基因的平均拷贝数为2.064±0.120,CV值5.8%;②SMA患者父母SMN1基因平均拷贝数为0.798±0.108,CV值13.5%;正常人(38/40,为人群SMN1拷贝数)SMN1基因平均拷贝数为2.106±0.18,CV值8.5%。结论SMA患者父母和正常对照者的SMN1拷贝数的分布不同,前者为1个拷贝的SMN1基因;后者以2个拷贝的SMN1基因为主。因此,SMN1基因定量检测可用于区分大部分正常人和SMA携带者。
基金Nantong Science and Technology Program,grant number(JC2018090)the Practice Innovation Training Program Projects for the Jiangsu College Students,grant number(201810304028z)the Scientific Innovation Research of College Graduates in Jiangsu Province,grant number(KYCX18-2415)。
文摘Spinal muscular atrophy(SMA)is an autosomal recessive hereditary neuromuscular disease.Exon 7 and 8 of survival of motor neuron 1(SMN1)gene or only exon 7 homology deletion leads to the failure to produce a full-length SMN gene.The copy number of SMN2 gene with high homology of SMN1 affects the degree of disease and was the target gene for targeting therapy,in which splicing silencer in intron 7 was the key to suppress the inclusion of exon 7.In this study,we projected to use CRISPR/Case 9 for the targeted editing of intronic-splicing silencer(ISS)sequence to promote the inclusion of SMN2 exon 7 and increase the production of SMN2 full-length(FL)gene expression.It happens that there was a protospacer adjacent motif(PAM)at one end of the ISS sequence according to the design of sgRNA.The recombinant vector of sgRNA HSMN2 CRISPR/Case 9 was constructed and transfected into HEK293 cells.Sequencing results showed that the ISS sequence could be edited accurately and targeting in the predicted direction,in which deleting small fragments,inserting small amounts and mutation.Quantitative analysis of RT-PCR products by restriction enzyme of DdeI digestion showed that the FL of SMN2 increased by 8%(P<0.05).In the primary cultured chondrocytes of SMA mice,in which sgRNA HSMN2 CRISPR/Case9 recombinant vector transfection could increase the SMN2 FL gene by 23%(P<0.05)and significantly improve SMN protein levels(P<0.05).CRISPR/Case 9 is an effective tool for gene editing and therapy of hereditary diseases,but it is rarely reported in the treatment of SMA diseases.This study shows that CRISPR/Case 9 was first used for the precision target of ISS sequence editing,which can effectively promote the production of SMN2 FL gene expressions,in which there was an important clinical reference value.
基金Project supported by the National Natural Science Foundation of China (No. J0710043)the Natural Science Foundation of Zheji-ang Province (No. 2007C33049), China
文摘Spinal muscular atrophy (SMA) is a disorder characterized by degeneration of lower motor neurons and occasionally bulbar motor neurons leading to progressive limb and trunk paralysis as well as muscular atrophy. Three types of SMA are recognized depending on the age of onset, the maximum muscular activity achieved, and survivorship: SMA1, SMA2, and SMA3. The survival of motor neuron (SMN) gene has been identified as an SMA determining gene, whereas the neuronal apoptosis inhibitory protein (NAlP) gene is considered to be a modifying factor of the severity of SMA. The main objective of this study was to analyze the deletion of SMN1 and NAIP genes in southern Chinese children with SMA. Here, polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was performed to detect the deletion of both exon 7 and exon 8 of SMN1 and exon 5 of NAIP in 62 southern Chinese children with strongly suspected clinical symptoms of SMA. All the 32 SMA1 patients and 76% (13/17) of SMA2 patients showed homozygous deletions for exon 7 and exon 8, and all the 13 SMA3 patients showed single deletion of SMNI exon 7 along with 24% (4/17) of SMA2 patients. Eleven out of 32 (34%) SMA1 patients showed NAIP deletion, and none of SMA2 and SMA3 patients was found to have NA1P deletion. The findings of homozygous deletions ofexon 7 and/or exon 8 ofSMN1 gene confirmed the diagnosis of SMA, and suggested that the deletion ofSMN1 exon 7 is a major cause of SMA in southern Chinese children, and that the NAIP gene may be a modifying factor for disease severity of SMAI. The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis and preimplantation genetic diagnosis of SMA.
基金Project supported by the National Natural Science Foundation of China(Nos.81050034 and 81500979)the Research Foundation of the Capital Institute of Pediatrics(No.Fangxiang-2014-01)the Beijing Talents Fund(No.2014000021469G228)
文摘The homozygous loss of the survival motor neuron 1 (SMN1) gene is the primary cause of spinal muscular atrophy (SMA), a neuromuscular degenerative disease. A genetically similar gene, SMN2, which is not functionally equivalent in all SMA patients, modifies the clinical SMA phenotypes. We analyzed the methylation levels of 4 CpG islands (CGIs) in SMN2 in 35 Chinese children with SMA by MassARRAY. We found that three CpG units located in CGI 1 (nucleotides (nt) -871, -735) and CGI 4 (nt +999) are significantly hypomethylated in SMA type III compared with type I or II children after receiving Bonferroni correction. In addition to the differentially methylated CpG unit of nt -871, the methylation level of the nt -290/-288/-285 unit was negatively correlated with the expression of SMN2 full-length transcripts (SMN2-fl). In addition, the methylation level at nt +938 was inversely proportional to the ratio of SMN2-fl and lacking exon 7 transcripts (SMN2-A7, fl/A7), and was not associated with the SMN2 transcript levels. Thus, we can conclude that SMN2 methylation may regulate the SMA disease phenotype by modulating its transcription.
基金the National Natural Science Foundation of China,No.32000841(to JJS)a grant from Science and Technology Project of Nantong of Jiangsu Province,No.JC2018090(to LCW)a grant from Graduate Research and Innovation Project of Jiangsu Province,No.KYCX18-2415(to LLD)。
文摘Spinal muscular atrophy(SMA)is a rare hereditary neuromuscular disease with a high lethality rate in infants.Variants in the homologous genes survival of motor neuron(SMN)1 and SMN2 have been reported to be SMA pathogenic factors.Previous studies showed that a highinclusion rate of SMN2 exon 7 increased SMN expression,which in turn reduced the severity of SMA.The inclusion rate of SMN2 exon 7 was higher in neural tissues than in non-neural tissues.Neuro-oncological ventral antigen(NOVA)is a splicing factor that is specifically and highly expressed in neurons.It plays a key role in nervous system development and in the induction of nervous system diseases.Howeve r,it remains unclear whether this splicing factor affects SMA.In this study,we analyzed the inclusion of SMN2 exon 7 in different tissues in a mouse model of SMA(genotype smn^(-/-)SMN2^(2 tg/0))and litter mate controls(genotype smn^(+/-)SMN2^(2 tg/0)).We found that inclusion level of SMN2 exon 7 was high in the brain and spinal co rd tissue,and that NOVA1 was also highly expressed in nervous system tissues.In addition,SMN2 exon 7 and NOVA1 were expressed synchronously in the central nervous system.We further investigated the effects of NOVA1 on disease and found that the number of neurons in the anterior horn of spinal cord decreased in the mouse model of SMA during postnatal days 1-7,and that NOVA1 expression levels in motor neurons decreased simultaneously as spinal muscular atrophy developed.We also found that in vitro expression of NOVA1 increased the inclusion of SMN2 exon 7 and expression ofthe SMN2 protein in the U87 MG cell line,whereas the opposite was observed when NOVA1 was knocked down.Finally,point mutation and RNA pull-down showed that the UCAC motif in SMN2 exon 7 plays a critical role in NOVA1 binding and promoting the inclusion of exon 7.Moreove r,CA was more essential for the inclusion of exon 7 than the order of Y residues in the motif.Collectively,these findings indicate that NOVA1 intera cts with the UCAC motif in exon 7 of SMN2,there by enhancing inclusion of exon 7 in SMN2,which in turn increases expression of the SMN protein.