The thawing of ice-rich permafrost leads to the formation of thermokarst landforms.Precise mapping of retrogressive thaw slumps(RTSs)is imperative for assessing the degradation and carbon exchange of permafrost at bot...The thawing of ice-rich permafrost leads to the formation of thermokarst landforms.Precise mapping of retrogressive thaw slumps(RTSs)is imperative for assessing the degradation and carbon exchange of permafrost at both local and regional scales on the Tibetan Plateau(TP).However,previous methods for RTSs mapping rely on a large number of samples and complex classifiers with low automation level or unnecessary complexity.We propose an automatic mapping network(AmRTSNet)for producing decimeter-level RTSs maps from GaoFen-7 images based on deep learning.Both the quantitative metrics and qualitative evaluations show that AmRTSNet trained in the Beiluhe offers significant advantages over previous methods.Without further fine-tuning,we conducted RTSs automatic mapping based on AmRTSNet in the Wulanwula,Chumarhe,and Gaolinggo.Over 141,312 ha on the TP have been automatically mapped,comprising 926 RTS regions with a total RTS area of 2318.72 ha.The average statistics of the mapped RTSs show low roundness(0.38),moderate rectangularity(0.61),and high convexity(0.79).About 90%of the RTSs are smaller than 6 ha.The average aspect ratio is 2.18.RTSs are unevenly distributed in belt-like aggregations with dominant density peaks.RTSs often concentrate in hillslopes and along lateral streams,with more dense areas more likely to have larger RTSs.展开更多
After the normal operation of the Three Gorges Reservoir,the water level of the reser-voir will fluctuate periodically.Water level fluctuation will soften the rock and soil on the banks,induce underground water fluctu...After the normal operation of the Three Gorges Reservoir,the water level of the reser-voir will fluctuate periodically.Water level fluctuation will soften the rock and soil on the banks,induce underground water fluctuation and decrease the shear strength of rock soil on the banks,and in turn affect the landslide stability.The Huangtupo(黄土坡) landslide is a typical large and complex landslide in the Three Gorges Reservoir region.In particular,the stability of its riverside slumping mass has a great stake.On the basis of the analysis of engineering geological condition and formation mechanism of the Huangtupo landslide,the authors established the 2D finite element model of riverside slumping mass II# and selected proper mechanical parameters of the rock.With the GeoStudio software,ac-cording to the reservoir running curve,the simulation on coupling effect of seepage field and stress field was conducted in 7 different modes in a year.The results showed that:① Huangtupo landslide is a large and complex landslide composed of multiple slumping masses,which occurred at different phases.Before reservoir impoundment,it was stable;② it is quite difficult for riverside slumping mass I# and II# to slide as a whole;③ the stability coefficient of riverside slumping mass II# changes with the res-ervoir water level fluctuations.The minimum stability coefficient occurs 48 days after the water level starts to fall and the moment when the water level falls by 11.9 m.Landslide monitoring result is con-sistent with the numerical simulation result,which shows that although the reservoir water level fluc-tuation will affect the foreside stability of the landslide and induce gradual damage,the riverside slumping mass II# is stable as a whole.展开更多
Transverse cracks and localized slumps frequently occur within loose deposits slopes when the slope base is removed either from natural or manmade processes. Although the contribution of rainfall to the slope failures...Transverse cracks and localized slumps frequently occur within loose deposits slopes when the slope base is removed either from natural or manmade processes. Although the contribution of rainfall to the slope failures was intensely discussed, the influence of localized slumps on hydrogeological conditions has received less attention. Usually, loose deposits slopes are composed of soil layers with different permeability; localized slumps may cause flow paths partly blocked in the permeable layer that is adversely confined between impermeable layers. In this study, a case history of such failure, Xiaodan (/J~ ~__) landslide, is introduced in detail. The localized slump caused the pressure head in the permeable layer to increase substantially, which reduced the stability of the slope. To quantify the influence, Ber- noulli equations are used to analytically study the increase of the pressure head with a hydrogeologicai model simplified from the slope. The factor of safety assessed by limit equilibrium methods may decrease up to 20% when the 80% of flow path is blocked. Thus, we should pay attention not only to changes of stress filed due to localized slumps but also to the influence of seepage variation on the slope stability.展开更多
Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extens...Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.展开更多
A new kind of nano-rod shaped polycarboxylic acid slump-retaining agent was synthesized.Transmission electron microscope(TEM) experiment showed that the nano-rod was bound together as macromolecular aggregates in solu...A new kind of nano-rod shaped polycarboxylic acid slump-retaining agent was synthesized.Transmission electron microscope(TEM) experiment showed that the nano-rod was bound together as macromolecular aggregates in solution.Application performance studying suggested that this kind nano-sized polymer material had excellently plasticity-retaining performance in cement-based materials and could improve endurance performance of hardened cement-based materials distinctly.The concrete with an initial slump of 2-9 cm could achieve 3 h plasticity-retaining performance with the help of this kind nano-rod.The product had extremely wide application value in the market.展开更多
Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst feature...Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst features caused by rapid degradation of ice rich permafrost,which transforms landforms and threatens infrastructures,and even affects the terrestrial carbon cycle.In this work,vegetation communities surrounding a RTS in the Fenghuoshan Mountains of the interior portion of the Qinghai-Tibet Plateau have been investigated to examine the impact from RTS.This investigation indicates that the occurrence of RTS influences the vegetation community by altering their habitats,especially the soil water content,which forces the vegetation community to evolve in order to adapt to the alterations.In the interior part of RTS where it has been disturbed tremendously,alterations have produced a wider niche and richer plant species.This favors species of a wet environment in a habitat where it was a relatively dry environment of alpine steppe prior to the occurrence of RTS.This study adds to limited observations regarding the impact of RTS to vegetation community on the QTP and helps us to reach a broader understanding of the effects of permafrost degradation as well as global warming.展开更多
The loess slumping hazard is a special type of slope failures in the northern area of loess plateau of China. The characteristics of paroxysm and high frequency of the hazard always lead to ruin of cave houses, as we...The loess slumping hazard is a special type of slope failures in the northern area of loess plateau of China. The characteristics of paroxysm and high frequency of the hazard always lead to ruin of cave houses, as well as a high human casualties. The hazard is also seriously harmful to railways, highroads and long transporting pipelines. With the mechanisms of both landslide and falling, as well as the forming process of sliding followed by collapses, loess slumping is used to be treated as landslide or falling. Based on field investigations and lab analyses of the loess between Jingbian County of Shaanxi Province and Puxian County of Shanxi Province along the line of west east gas transportation project which is 300 km long, it is discovered that the hazards of loess slumping are controlled by the content of clay, which lead to their obvious regional properties: the area with a content of clay (<0.005 mm) less than 10 %, called sand loess area, is a seriously developing area of slumping; the area with a content of clay between 10 % and 20 %, called typical loess area, is a medium developing area of slumping; the area with a content of clay more than 20 %, called clay loess area, is a non developing area of slumping. Based on research of the formation mechanism and formation conditions of the loess slumping hazards, some corresponding engineering countermeasures are suggested in this paper.展开更多
A new kind of polycarboxylate superplasticizer with high slump loss resistance was obtained by designing scheduled molecular structure.The number average molecular mass of the polymer was characterized by the gel perm...A new kind of polycarboxylate superplasticizer with high slump loss resistance was obtained by designing scheduled molecular structure.The number average molecular mass of the polymer was characterized by the gel permeation chromatography measurements.And chemical structure of the polymer was observed by the Fourier transform infrared spectroscopy(FT-IR).The results show that the good workable maintaining of self-compacting concrete could be achieved through direct adjustment of number average molecular mass and different unsaturated monomer in synthetic process.The FT-IR analysis illustrated that the high slump loss resistance of polycarboxylate superplasticizers with ester and carboxyl group and expectations of molecular structure were designed.展开更多
N-2000 is an admixture for concrete,with a low slump loss,high range water-reducing ratio and long-time retarding.The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation(NSMP)and ATMP.Its characterist...N-2000 is an admixture for concrete,with a low slump loss,high range water-reducing ratio and long-time retarding.The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation(NSMP)and ATMP.Its characteristic results from the synergistic effects of NSMP and ATMP.The results show that when 0.7%-1.2%of N-2000 is added to concrete(by mass of cement),the water reducing ratio is up to 20%-30%,and the slump of fresh concrete can be retained for 2 hours without significant loss.N-2000 can not only improve the workability of fresh concrete but also increase the strength of the hardened concrete,especially early strength.It is also proved to have a good compatibility with various cements.展开更多
In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the...In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the chemical properties. The clayey soil samples were taken from the region of Teziutlán-Puebla-Mexico. Yield stress was calculated using the slump test in cylindrical geometry. Results show three zones. The first one shows an exponential decrement on yield stress due to lower water content in accord with clayey soils with high content of illita, followed by a second region where yield stress decreases dramatically at a certain critical water concentration, and the third one where yield stress dependence is not well-defined since the clayey soil flow is seen. Finally, it is discussed how yield stress variation due to the water increment influences the landslide risk increment.展开更多
In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies ...In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.展开更多
China had entered a period of moderate economic growtht one that is moving at an appropriate pace. China's economy is bottoming out and seeking a new balance,
In the mountainous permafrost area,most thaw slumps are distributed in north or northeast-facing shady slope areas.It is commonly known that there is a heterogeneity in permafrost between diferent slope aspects,but th...In the mountainous permafrost area,most thaw slumps are distributed in north or northeast-facing shady slope areas.It is commonly known that there is a heterogeneity in permafrost between diferent slope aspects,but there has been a lack of detailed measured data to quantitatively evaluate their relationships,and in-depth understandings on how the slope aspects are linked to the distribution of thaw slumps.This study examined the heterogenous thermal regime,soil moisture content,and surface radiation at two slope sites with opposing aspects in a warming permafrost region on the Qinghai-Tibet Plateau(QTP).The results indicate that similar air temperatures(T_(a))were monitored on the two slopes,but there were signifcant diferences in ground temperature and moisture content in the active layer from 2016 to 2021.The sunny slope exhibited a higher mean annual ground surface temperature(T_(s)),and over the fve years the mean annual temperature at the top of permafrost was 1.3–1.4℃warmer on the sunny slope than the shady slope.On the contrary,the near-surface soil moisture content was about 10–13%lower on the sunny slope(~22–27%)than the shady slope(~35–38%)during the thawing season(June–September).Radiation data indicate that signifcantly higher shortwave downward radiation(DR)appeared at the sunny slope site.However,due to the greater surface albedo,the net radiation(Rn)was lower on the sunny slope.Slope aspect also afects the ground ice content due to its infuence on ground temperature,freeze-thaw cycles,and soil moisture.Shady slopes have a shallower burial of ice-rich permafrost compared to sunny slopes.The results highlight greatly diferent near-surface ground thermal conditions at the two slope sites with diferent aspects in a mountainous permafrost region.This helps identify the slope-related causes of increasing thaw slumps and provides a basis for predicting their future development.展开更多
Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landfor...Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landforms in permafrost areas,which can result in the instability of landscape and ecosystem.However,the spatiotemporal characteristics of surface deformation of RTSs are still unclear,and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed.In this study,we applied a multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR)method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021.The deformation rates of RTSs ranged from−35 to 20 mm/year,and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs:stable,abrupt thaw,and linear subsidence.A total of 375 RTSs were identifed in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images.Among them,76 RTSs were newly developed,and 26%more than the inventory derived from the optical images alone.This study demonstrated that the combination of InSAR-derived deformation with optical images has signifcant potential for detecting RTSs with high accuracy and efciency at the regional scale.展开更多
In the past 30 years, people have been paying attention to the relation between the deltas located on the slope of a basin border and the turbidite fans located in deep marine plain or deep lake plain, and have found ...In the past 30 years, people have been paying attention to the relation between the deltas located on the slope of a basin border and the turbidite fans located in deep marine plain or deep lake plain, and have found that the turbidites related to the deltas develop in lacustrine basins better than in marine basins. And, it is difficult to use the standard sub-展开更多
The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm ...The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique.展开更多
A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcr...A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcrop was formed in a near-shore setting and belongs to the Ludharwa Member of the Baisakhi Formation.The 3-m-thick unit shows a number of asymmetric folds and thrust faults leading to an imbrication of partly lithified sandstone beds.The deformation structures allow the reconstruction of a movement towards the northwest.This agrees well with the basin configuration that shows a deepening into this direction.Although the determination of a specific trigger mechanism is difficult for soft-sediment deformation structures,an earthquake caused by synsedimentary tectonics in the basin seems to be the most likely explanation.展开更多
Thaw slumping is a periglacial process that occurs on slopes in cold environments,where the ground becomes unstable and the surface slides downhill due to saturation with water during thawing.In this study,GaoFen-1 re...Thaw slumping is a periglacial process that occurs on slopes in cold environments,where the ground becomes unstable and the surface slides downhill due to saturation with water during thawing.In this study,GaoFen-1 remote sensing and fused multi-source feature data were used to automatically map thaw slumping landforms in the Beilu River Basin of the Qinghai–Tibet Plateau.The bi-directional cascade network structure was used to extract edges at diferent scales,where an individual layer was supervised by labeled edges at its specifc scale,rather than directly applying the same supervision to all convolutional neural network outputs.Additionally,we conducted a 5-year multi-scale feature analysis of small baseline subset interferometric synthetic aperture radar deformation,normalized diference vegetation index,and slope,among other features.Our study analyzed the performance and accuracy of three methods based on edge object supervised learning and three preconfgured neural networks,ResNet101,VGG16,and ResNet152.Through verifcation using site surveys and multi-data fusion results,we obtained the best ResNet101 model score of intersection over union of 0.85(overall accuracy of 84.59%).The value of intersection over union of the VGG and ResNet152 are 0.569 and 0.773,respectively.This work provides a new insight for the potential feasibility of applying the designed edge detection method to map diverse thaw slumping landforms in larger areas with high-resolution images.展开更多
基金The Second Tibetan Plateau Scientific Expedition and Research,No.2022QZKK0101National Natural Science Foundation of China,No.42271427。
文摘The thawing of ice-rich permafrost leads to the formation of thermokarst landforms.Precise mapping of retrogressive thaw slumps(RTSs)is imperative for assessing the degradation and carbon exchange of permafrost at both local and regional scales on the Tibetan Plateau(TP).However,previous methods for RTSs mapping rely on a large number of samples and complex classifiers with low automation level or unnecessary complexity.We propose an automatic mapping network(AmRTSNet)for producing decimeter-level RTSs maps from GaoFen-7 images based on deep learning.Both the quantitative metrics and qualitative evaluations show that AmRTSNet trained in the Beiluhe offers significant advantages over previous methods.Without further fine-tuning,we conducted RTSs automatic mapping based on AmRTSNet in the Wulanwula,Chumarhe,and Gaolinggo.Over 141,312 ha on the TP have been automatically mapped,comprising 926 RTS regions with a total RTS area of 2318.72 ha.The average statistics of the mapped RTSs show low roundness(0.38),moderate rectangularity(0.61),and high convexity(0.79).About 90%of the RTSs are smaller than 6 ha.The average aspect ratio is 2.18.RTSs are unevenly distributed in belt-like aggregations with dominant density peaks.RTSs often concentrate in hillslopes and along lateral streams,with more dense areas more likely to have larger RTSs.
基金supported by the National Natural Science Fundation of China (No. 40872175)the National Basic Research Program of China (973 Program) (No. 2011CB710604)
文摘After the normal operation of the Three Gorges Reservoir,the water level of the reser-voir will fluctuate periodically.Water level fluctuation will soften the rock and soil on the banks,induce underground water fluctuation and decrease the shear strength of rock soil on the banks,and in turn affect the landslide stability.The Huangtupo(黄土坡) landslide is a typical large and complex landslide in the Three Gorges Reservoir region.In particular,the stability of its riverside slumping mass has a great stake.On the basis of the analysis of engineering geological condition and formation mechanism of the Huangtupo landslide,the authors established the 2D finite element model of riverside slumping mass II# and selected proper mechanical parameters of the rock.With the GeoStudio software,ac-cording to the reservoir running curve,the simulation on coupling effect of seepage field and stress field was conducted in 7 different modes in a year.The results showed that:① Huangtupo landslide is a large and complex landslide composed of multiple slumping masses,which occurred at different phases.Before reservoir impoundment,it was stable;② it is quite difficult for riverside slumping mass I# and II# to slide as a whole;③ the stability coefficient of riverside slumping mass II# changes with the res-ervoir water level fluctuations.The minimum stability coefficient occurs 48 days after the water level starts to fall and the moment when the water level falls by 11.9 m.Landslide monitoring result is con-sistent with the numerical simulation result,which shows that although the reservoir water level fluc-tuation will affect the foreside stability of the landslide and induce gradual damage,the riverside slumping mass II# is stable as a whole.
基金supported by the National Natural Science Foundation of China(No.40972187)the Key Innovation Team Support Project of ZhejiangProvince(No.2009R50050)
文摘Transverse cracks and localized slumps frequently occur within loose deposits slopes when the slope base is removed either from natural or manmade processes. Although the contribution of rainfall to the slope failures was intensely discussed, the influence of localized slumps on hydrogeological conditions has received less attention. Usually, loose deposits slopes are composed of soil layers with different permeability; localized slumps may cause flow paths partly blocked in the permeable layer that is adversely confined between impermeable layers. In this study, a case history of such failure, Xiaodan (/J~ ~__) landslide, is introduced in detail. The localized slump caused the pressure head in the permeable layer to increase substantially, which reduced the stability of the slope. To quantify the influence, Ber- noulli equations are used to analytically study the increase of the pressure head with a hydrogeologicai model simplified from the slope. The factor of safety assessed by limit equilibrium methods may decrease up to 20% when the 80% of flow path is blocked. Thus, we should pay attention not only to changes of stress filed due to localized slumps but also to the influence of seepage variation on the slope stability.
基金funded by the National Natural Science Foundation of China(42372334)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G05)。
文摘Under the rapidly warming climate in the Arctic and high mountain areas,permafrost is thawing,leading to various hazards at a global scale.One common permafrost hazard termed retrogressive thaw slump(RTS)occurs extensively in ice-rich permafrost areas.Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making.To this end,we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor(QTEC)at a local scale.The results indicate that extreme summer climate events(e.g.,maximum air temperature and rainfall)contributes the most to the RTS occurrence over the flat areas with fine-grained soils.The model predicts that 13%(ca.22,948 km^(2))of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from-3 to-1℃.This study provides insights into the impacts of permafrost thaw on the stability of landscape,carbon stock,and infrastructure,and the results are of value for engineering planning and maintenance.
基金the Jiangsu Province Natural Science Foundation(No.BK2008520)the Jiangsu Postdoctoral Research Funds(No.0901008C)the China Postdoctoral Science Foundation(No.20090461120)
文摘A new kind of nano-rod shaped polycarboxylic acid slump-retaining agent was synthesized.Transmission electron microscope(TEM) experiment showed that the nano-rod was bound together as macromolecular aggregates in solution.Application performance studying suggested that this kind nano-sized polymer material had excellently plasticity-retaining performance in cement-based materials and could improve endurance performance of hardened cement-based materials distinctly.The concrete with an initial slump of 2-9 cm could achieve 3 h plasticity-retaining performance with the help of this kind nano-rod.The product had extremely wide application value in the market.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2021QZKK0201)the State Key Laboratory of Frozen Soil Engineering Funds(SKLFSE-ZT-202109)the fund of Qinghai Provincial Investigation Project“Study on permafrost degradation and its geological hazard effect”(E1490604).
文摘Under global warming,permafrost around the world is experiencing degradation which is especially so on the Third Pole,the Qinghai-Tibet Plateau(QTP),China.Retrogressive thaw slump(RTS)is one of the thermokarst features caused by rapid degradation of ice rich permafrost,which transforms landforms and threatens infrastructures,and even affects the terrestrial carbon cycle.In this work,vegetation communities surrounding a RTS in the Fenghuoshan Mountains of the interior portion of the Qinghai-Tibet Plateau have been investigated to examine the impact from RTS.This investigation indicates that the occurrence of RTS influences the vegetation community by altering their habitats,especially the soil water content,which forces the vegetation community to evolve in order to adapt to the alterations.In the interior part of RTS where it has been disturbed tremendously,alterations have produced a wider niche and richer plant species.This favors species of a wet environment in a habitat where it was a relatively dry environment of alpine steppe prior to the occurrence of RTS.This study adds to limited observations regarding the impact of RTS to vegetation community on the QTP and helps us to reach a broader understanding of the effects of permafrost degradation as well as global warming.
文摘The loess slumping hazard is a special type of slope failures in the northern area of loess plateau of China. The characteristics of paroxysm and high frequency of the hazard always lead to ruin of cave houses, as well as a high human casualties. The hazard is also seriously harmful to railways, highroads and long transporting pipelines. With the mechanisms of both landslide and falling, as well as the forming process of sliding followed by collapses, loess slumping is used to be treated as landslide or falling. Based on field investigations and lab analyses of the loess between Jingbian County of Shaanxi Province and Puxian County of Shanxi Province along the line of west east gas transportation project which is 300 km long, it is discovered that the hazards of loess slumping are controlled by the content of clay, which lead to their obvious regional properties: the area with a content of clay (<0.005 mm) less than 10 %, called sand loess area, is a seriously developing area of slumping; the area with a content of clay between 10 % and 20 %, called typical loess area, is a medium developing area of slumping; the area with a content of clay more than 20 %, called clay loess area, is a non developing area of slumping. Based on research of the formation mechanism and formation conditions of the loess slumping hazards, some corresponding engineering countermeasures are suggested in this paper.
文摘A new kind of polycarboxylate superplasticizer with high slump loss resistance was obtained by designing scheduled molecular structure.The number average molecular mass of the polymer was characterized by the gel permeation chromatography measurements.And chemical structure of the polymer was observed by the Fourier transform infrared spectroscopy(FT-IR).The results show that the good workable maintaining of self-compacting concrete could be achieved through direct adjustment of number average molecular mass and different unsaturated monomer in synthetic process.The FT-IR analysis illustrated that the high slump loss resistance of polycarboxylate superplasticizers with ester and carboxyl group and expectations of molecular structure were designed.
基金Key Science and Technology Development Fund Project of Hubei Province.China(No.941PO106).
文摘N-2000 is an admixture for concrete,with a low slump loss,high range water-reducing ratio and long-time retarding.The N-2000 is made up of naphthalene-sulfonic-maldehyde polycondensation(NSMP)and ATMP.Its characteristic results from the synergistic effects of NSMP and ATMP.The results show that when 0.7%-1.2%of N-2000 is added to concrete(by mass of cement),the water reducing ratio is up to 20%-30%,and the slump of fresh concrete can be retained for 2 hours without significant loss.N-2000 can not only improve the workability of fresh concrete but also increase the strength of the hardened concrete,especially early strength.It is also proved to have a good compatibility with various cements.
文摘In this work, the yield stress evaluation as a function of water content for slip-prone clayey soils is studied in order to understand how yield stress decreases as water content increases, and their relation with the chemical properties. The clayey soil samples were taken from the region of Teziutlán-Puebla-Mexico. Yield stress was calculated using the slump test in cylindrical geometry. Results show three zones. The first one shows an exponential decrement on yield stress due to lower water content in accord with clayey soils with high content of illita, followed by a second region where yield stress decreases dramatically at a certain critical water concentration, and the third one where yield stress dependence is not well-defined since the clayey soil flow is seen. Finally, it is discussed how yield stress variation due to the water increment influences the landslide risk increment.
文摘In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.
文摘China had entered a period of moderate economic growtht one that is moving at an appropriate pace. China's economy is bottoming out and seeking a new balance,
基金supported by the Second Tibet Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905)the Gansu Province Science and Technology Major Special Projects(Grant No.22ZD6FA004)the National Natural Science Foundation of China(Grant No.41971089).
文摘In the mountainous permafrost area,most thaw slumps are distributed in north or northeast-facing shady slope areas.It is commonly known that there is a heterogeneity in permafrost between diferent slope aspects,but there has been a lack of detailed measured data to quantitatively evaluate their relationships,and in-depth understandings on how the slope aspects are linked to the distribution of thaw slumps.This study examined the heterogenous thermal regime,soil moisture content,and surface radiation at two slope sites with opposing aspects in a warming permafrost region on the Qinghai-Tibet Plateau(QTP).The results indicate that similar air temperatures(T_(a))were monitored on the two slopes,but there were signifcant diferences in ground temperature and moisture content in the active layer from 2016 to 2021.The sunny slope exhibited a higher mean annual ground surface temperature(T_(s)),and over the fve years the mean annual temperature at the top of permafrost was 1.3–1.4℃warmer on the sunny slope than the shady slope.On the contrary,the near-surface soil moisture content was about 10–13%lower on the sunny slope(~22–27%)than the shady slope(~35–38%)during the thawing season(June–September).Radiation data indicate that signifcantly higher shortwave downward radiation(DR)appeared at the sunny slope site.However,due to the greater surface albedo,the net radiation(Rn)was lower on the sunny slope.Slope aspect also afects the ground ice content due to its infuence on ground temperature,freeze-thaw cycles,and soil moisture.Shady slopes have a shallower burial of ice-rich permafrost compared to sunny slopes.The results highlight greatly diferent near-surface ground thermal conditions at the two slope sites with diferent aspects in a mountainous permafrost region.This helps identify the slope-related causes of increasing thaw slumps and provides a basis for predicting their future development.
基金funded by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070104)+1 种基金the National Natural Science Foundation of China(Grant Nos.42174046 and 42171443)the National Key R&D Program of China(Grant No.2017YFA0603103).
文摘Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength.Retrogressive thaw slumps(RTSs)are among the most dynamic landforms in permafrost areas,which can result in the instability of landscape and ecosystem.However,the spatiotemporal characteristics of surface deformation of RTSs are still unclear,and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed.In this study,we applied a multi-temporal Interferometric Synthetic Aperture Radar(MT-InSAR)method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021.The deformation rates of RTSs ranged from−35 to 20 mm/year,and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs:stable,abrupt thaw,and linear subsidence.A total of 375 RTSs were identifed in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images.Among them,76 RTSs were newly developed,and 26%more than the inventory derived from the optical images alone.This study demonstrated that the combination of InSAR-derived deformation with optical images has signifcant potential for detecting RTSs with high accuracy and efciency at the regional scale.
文摘In the past 30 years, people have been paying attention to the relation between the deltas located on the slope of a basin border and the turbidite fans located in deep marine plain or deep lake plain, and have found that the turbidites related to the deltas develop in lacustrine basins better than in marine basins. And, it is difficult to use the standard sub-
文摘The thermal stability and separation characteristics of anti-sticking layers of Pt/Cr films are studied in this paper. Several types of adhesion layers were investigated: 10.0 nm Pt, 1.5 nm Cr + 50.0 nm Pt, 2.5 nm Cr + 50.0 nm Pt and 3.5 nm Cr + 50.0 nm Pt fabricated using direct current magnetron sputtering. The variation of layer thickness, roughness, crystallization and surface topography of Pt/Cr films were analyzed by grazing incidence X-ray reflectometry, large angle X-ray diffraction and optical profiler before and after heating. 2.5 nm Cr + 50.0 nm Pt film exhibits the best thermal stability and separation characteristics according to the heating and hot slumping experiments. The film was also applied as an anti-sticking layer to optimize the maximum temperature of the hot slumping technique.
基金supported by the Alexander von Humboldt Foundation, Germany [Matthias Alberti]the Department of Science and Technology, India [Dhirendra K.Pandey]the Jagiellonian University, Poland [Alfred Uchman]
文摘A spectacularly exposed slump is described from a 120-m-long road cut between the villages of Kanod and Deva in the northeastern Jaisalmer Basin of Rajasthan,India.The Upper Jurassic part of the sediments at the outcrop was formed in a near-shore setting and belongs to the Ludharwa Member of the Baisakhi Formation.The 3-m-thick unit shows a number of asymmetric folds and thrust faults leading to an imbrication of partly lithified sandstone beds.The deformation structures allow the reconstruction of a movement towards the northwest.This agrees well with the basin configuration that shows a deepening into this direction.Although the determination of a specific trigger mechanism is difficult for soft-sediment deformation structures,an earthquake caused by synsedimentary tectonics in the basin seems to be the most likely explanation.
基金supported by the Second Tibetan Plateau Scientifc Expedition and Research Program(STEP)(Grant No.2019QZKK0905)the National Science Foundation of China(Grant No.42071097)+1 种基金the foundation of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE202003)the 14th Graduate Education Innovation Fund of Wuhan Institute of Technology(Grant No.CX2022164).
文摘Thaw slumping is a periglacial process that occurs on slopes in cold environments,where the ground becomes unstable and the surface slides downhill due to saturation with water during thawing.In this study,GaoFen-1 remote sensing and fused multi-source feature data were used to automatically map thaw slumping landforms in the Beilu River Basin of the Qinghai–Tibet Plateau.The bi-directional cascade network structure was used to extract edges at diferent scales,where an individual layer was supervised by labeled edges at its specifc scale,rather than directly applying the same supervision to all convolutional neural network outputs.Additionally,we conducted a 5-year multi-scale feature analysis of small baseline subset interferometric synthetic aperture radar deformation,normalized diference vegetation index,and slope,among other features.Our study analyzed the performance and accuracy of three methods based on edge object supervised learning and three preconfgured neural networks,ResNet101,VGG16,and ResNet152.Through verifcation using site surveys and multi-data fusion results,we obtained the best ResNet101 model score of intersection over union of 0.85(overall accuracy of 84.59%).The value of intersection over union of the VGG and ResNet152 are 0.569 and 0.773,respectively.This work provides a new insight for the potential feasibility of applying the designed edge detection method to map diverse thaw slumping landforms in larger areas with high-resolution images.