期刊文献+
共找到51,711篇文章
< 1 2 250 >
每页显示 20 50 100
Stability analysis of karst anti dip rock slope induced by underground coal mining——A case study of Jiguanling landslide, China
1
作者 ZHONG Zuliang LIANG Erwei +1 位作者 WANG Nanyun XU Yawei 《Journal of Mountain Science》 2025年第4期1226-1244,共19页
In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong... In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role. 展开更多
关键词 Anti-dip rock slope Mining action slope deformation mechanism slope instability mechanism Evolution law of cracks
原文传递
Dynamic responses of steep bedding slope-tunnel system under coupled rainfall-seismicity:Shaking table test 被引量:1
2
作者 Wanpeng Shi Jianwei Zhang +3 位作者 Danqing Song Xiaoli Liu Enzhi Wang Jianmin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2072-2090,共19页
The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were ca... The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions. 展开更多
关键词 Rainfall and earthquake coupling Steep bedding slope-tunnel system Dynamic response characteristics slope and tunnel interaction Damage evolution
在线阅读 下载PDF
Erosion on marginal slopes of unpaved roads in semi-arid Brazil,and the role of Caatinga vegetation in sediment retention and disconnectivity
3
作者 Teresa Raquel Lima FARIAS Maria Thereza Rocha CHAVES +3 位作者 Cicero Lima de ALMEIDA Pedro Henrique Augusto MEDEIROS José Carlos de ARAÚJO Joaquín NAVARRO-HEVIA 《Journal of Arid Land》 2025年第4期500-514,共15页
Vegetation plays a major role in soil protection against erosion effects,and studies have also highlighted its importance in retaining sediments from roadside slopes.Yet,hydro-sedimentological studies under natural pr... Vegetation plays a major role in soil protection against erosion effects,and studies have also highlighted its importance in retaining sediments from roadside slopes.Yet,hydro-sedimentological studies under natural precipitation conditions are still scarce in semi-arid areas due to difficulties in monitoring the few and very concentrated precipitation events.Quantifying sediment connectivity and yield at watershed scale,often highly impacted by the erosion of unpaved roads,is necessary for management plans.This study aims to evaluate the efficiency of native vegetation on roadside slope segments in Caatinga biome in retaining sediments and conserving the soil in a semi-arid area of Brazil.Surface runoff,sediment concentration,and yield measurements were measured from 34 natural precipitation events in four years on two slopes with and without vegetation.The runoff coefficients of the plot with no vegetation varied from 3.0%to 58.0%,while in the vegetated plot,they showed variation from 1.0%to 21.0%.The annual specific sediment yield ranged from 4.6 to 138.7 kg/(hm^(2)•a)for the vegetated plot and from 34.9 to 608.5 kg/(hm^(2)•a)for the unvegetated one.These results indicate a 4 to 12 times higher soil loss on the unvegetated slope in relation to the vegetated one and demonstrate that natural Caatinga vegetation acts as an effective barrier against surface-transported sediments.Moreover,natural Caatinga vegetation present on the slope plays an important role in breaking connectivity between sediment flows from unpaved roads and the watershed drainage system.These findings indicate that investments in unpaved road and roadside slope restoration,not only enhance road infrastructure but also promote environmental gains by reducing the impact of erosion. 展开更多
关键词 erosion control road erosion road slopes road impact sediment retention slope restoration
在线阅读 下载PDF
Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology
4
作者 Miguel A.Millán Rubén A.Galindo Fausto Molina-Gómez 《Computer Modeling in Engineering & Sciences》 2025年第9期2923-2941,共19页
Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patte... Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns.This complexity poses significant challenges for slope stability analysis,requiring the development of specialized techniques to address these issues.This research presents a numerical methodology that incorporates spatial variability,nonlinear material characterization,and probabilistic analysis using a Monte Carlo framework to address this issue.The heterogeneous structure is represented by randomly assigning different lithotypes across the slope,while maintaining predefined global proportions.This contrasts with the more common approach of applying probabilistic variability to mechanical parameters within a homogeneous slope model.The material behavior is defined using complex nonlinear failure criteria,such as the Hoek-Brown model and a parabolic model with collapse,both implemented through linearization techniques.The Discontinuity Layout Optimization(DLO)method,a novel numerical approach based on limit analysis,is employed to efficiently incorporate these advances and compute the factor of safety of the slope.Within this framework,the Monte Carlo procedure is used to assess slope stability by conducting a large number of simulations,each with a different lithotype distribution.Based on the results,a hybrid method is proposed that combines probabilistic modeling with deterministic design principles for the slope stability assessment.As a case study,the methodology is applied to a 20-m-high vertical slope composed of three lithotypes(altered scoria,welded scoria,and basalt)randomly distributed in proportions of 15%,60%,and 25%,respectively.The results show convergence of mean values after approximately 400 simulations and highlight the significant influence of spatial heterogeneity,with variations of the factor of safety between 5 and 12 in 85%of cases.They also reveal non-circular and mid-slope failure wedges not captured by traditional stability methods.Finally,an equivalent normal probability distribution is proposed as a reliable approximation of the factor of safety for use in risk analysis and engineering decision-making. 展开更多
关键词 Pyroclast Monte Carlo rock slope volcanic rock discontinuity layout optimization method non-homogeneous slope spatial variability
在线阅读 下载PDF
Step-path failure of the rock slopes with large intersection angles between the strikes of strata and surface:a case study
5
作者 ZHANG Juehao HUANG Da +3 位作者 LI Zhao GUO Zizheng SONG Yixiang XIAO Huabo 《Journal of Mountain Science》 2025年第3期931-949,共19页
Rock slopes with large intersection angles between the strikes of strata and surface(RS-LISS)represent a unique type of layered rock slope.These slopes are usually considered to be well stabilized and less prone to la... Rock slopes with large intersection angles between the strikes of strata and surface(RS-LISS)represent a unique type of layered rock slope.These slopes are usually considered to be well stabilized and less prone to landslides.However,when such slopes contain a significant number of discontinuities,their stability is greatly weakened.This study provided innovative insights into the stability of RS-LISS and conducted an in-depth investigation of their step-path failure mechanisms.The Riyi landslide on the eastern margin of the Qinghai-Tibet Plateau,China,was taken as a typical case and detailed investigations of geological structure and deformation characteristics of the slope were conducted by means of slope mapping,core drilling,and exploratory adits.A large number of steep-dip and gentle-dip joints were discovered in the slope,along with several critical discontinuities such as faults.Analysis shows that the tectonic stresses and river downcutting over geological time played significant roles in the formation of these discontinuities.Based on the investigation results,a numerical model of DFN for the Riyi landslide was developed.The simulation results indicated that the slope could develop a sliding surface characterized by a steep back and a gentle base,formed through the stepped interconnection of various discontinuities.Additionally,the deformation of the rock mass mainly originated from the major fault,progressively extending downward.The sliding mass may slide suddenly as a whole along the stepped bottom surface,with the compressional fracture zones as lateral boundaries,presenting a"drawer-like"movement towards the free surface. 展开更多
关键词 Layered rock slope Step-path failure slope structure Numerical modeling Failure mechanism
原文传递
Investigation of high rock slope failure mechanisms: a case study of a uranium mine in Namibia
6
作者 TAO Zhigang XIE Guanchang +3 位作者 LIU Yulong ZHENG Xiaohui SHI Guangcheng HUANG Chen 《Journal of Mountain Science》 2025年第4期1446-1461,共16页
The instability and failure of high rock slopes have a significant impact on the safe mining operations.Therefore,revealing the instability mechanism of high rock slopes is of great research significance.This paper ai... The instability and failure of high rock slopes have a significant impact on the safe mining operations.Therefore,revealing the instability mechanism of high rock slopes is of great research significance.This paper aims to reveal the instability mechanism of high rock slopes through physical model tests and numerical simulations.Taking the slope failure on the west side of Pit 1 of Husab Uranium Mine in Namibia in 2021 as the research background,a physical model of the high rock slope of Husab Uranium Mine was established by combining with on-site geological data.The experimental system was monitored by a GoPro camera,a CCD camera,and strain sensors.The damage evolution process of the high rock slope model was analyzed,and numerical simulation verification was carried out using Flac 3D software.Thus,the instability mechanism of the slope failure in this open-pit mine was revealed from multiple perspectives.The results show that the instability mechanism of the high rock slope was determined through the evolution of the displacement field and strain field during the model excavation process,as well as the deformation characteristics of the images at the time of instability and failure.The slope deformation process can be divided into four stages:the initial inter-layer dislocation stage,the crack generation stage,the crack propagation stage,and the crack penetration and failure stage.The results of the model experiment and numerical simulation confirm the consistency between the failure mode of the model slope and the actual slope failure on-site,providing guidance for the prevention and control projects of similar types of mine failures. 展开更多
关键词 High rock slope slope stability Physical model experiment Failure mode Numerical analysis
原文传递
A method for terrain slope model selection considering aleatory uncertainty
7
作者 Jinlu Zhang Yi Cheng +3 位作者 Wen Ge Shuxue Li Ge Zhu Lianshuai Cao 《Episodes》 2025年第4期463-478,共16页
Selecting the optimal model helps decision-makers to reduce the uncertainty in the slope calculation process.The uncertainty quantification process using root-mean-square error(RMSE)has limitations.It can obscure loca... Selecting the optimal model helps decision-makers to reduce the uncertainty in the slope calculation process.The uncertainty quantification process using root-mean-square error(RMSE)has limitations.It can obscure local uncertainty features and neglect the statistical characteristics of uncertainty,which may hinder decision-makers'understanding and model selection. 展开更多
关键词 selecting optimal model terrain slope model selection aleatory uncertainty decision makers understanding model selection root mean square error uncertainty quantification slope calculation processthe
在线阅读 下载PDF
Advances in fibre-optic-based slope reinforcement monitoring:A review
8
作者 Ashis Acharya Tetsuya Kogure 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1263-1284,共22页
Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many poin... Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many point-based monitoring instruments have been used in the last few decades.However,these sensors suffer from a particular risk of detection failures and practical limitations.Fibre-optic sensing(FOS)technologies have been developed,tested,and validated across various geoengineering applications,including slope monitoring,as they offer exceptional advantages,such as high data-carrying capacity,precise mapping of physical parameters,durability,and immunity to electromagnetic interference.The deformation of rock/soil causes the deformation and fracture of reinforcement materials,which are subsequently transferred to the encapsulated fibre-optic(FO)sensors,providing valuable information on reinforcements'safety state and performance for early failure detection.This paper is devoted to critically analysing the application of cutting-edge FOS technologies for slope reinforcement monitoring.Firstly,a concise overview of the fundamental principles underlying discrete and distributed FOS methods is provided.The key considerations for selecting FO cables and the appropriate packaging techniques necessary to withstand the challenges posed by complex geological environments are also summarised.We delve into the details of three distinct cable installation techniques within slope reinforcement components:surface bonding,slot embedment,and clamping.The recent advancements in FOS methods for monitoring slope reinforcements such as rock bolts,soil nails,anti-slide piles,geosynthetics,and retaining walls are extensively reviewed.The paper addresses this novel sensing technique's challenges and comprehensively explores its prospects.This review is anticipated to be a valuable resource for geoengineers and researchers involved in slope monitoring through FOS technology,offering insightful perspectives and guidance. 展开更多
关键词 Optical fibre slope reinforcement slope monitoring Fibre bragg grating(FBG) Distributed fibre-optic sensing(FOS) Early warning(EW)
在线阅读 下载PDF
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
9
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
在线阅读 下载PDF
Prediction of overburden layer thickness based on spatial heterogeneity analysis and machine learning models in hillslope regions
10
作者 Zhilu Chang Shui-Hua Jiang +4 位作者 Faming Huang Lei Shi Jinsong Huang Jianhong Wan Filippo Catani 《Geoscience Frontiers》 2025年第5期109-122,共14页
The spatial distribution of overburden layer thickness(OLT)is crucial for landslide susceptibility prediction and slope stability analysis.Due to OLT spatial heterogeneity in hillslope regions,combined with the diffic... The spatial distribution of overburden layer thickness(OLT)is crucial for landslide susceptibility prediction and slope stability analysis.Due to OLT spatial heterogeneity in hillslope regions,combined with the difficulty and time consumption of OLT sample collection,accurately predicting OLT distribution remains a challenging.To address this,a novel framework has been developed.First,OLT samples are collected through field surveys,remote sensing,and geological drilling.Next,the heterogeneity of OLT’s spatial distribution is analyzed using the probability distribution of OLT samples and their horizontal and vertical distributions.The OLT samples are categorized and the small sample categories are expanded using the synthetic minority over-sampling technique(SMOTE).The slope position is selected as a key conditioning factor.Subsequently,16 conditioning factors are applied to construct OLT prediction model using the random forest regression algorithm.Weights are assigned to each OLT sample category to balance the uneven distribution of sample sizes.Finally,the Pearson correlation coefficient,mean absolute error(MAE),root mean square error(RMSE),and Lin’s concordance correlation coefficient(Lin’s CCC)are employed to validate the OLT prediction results.The Huangtan town serves as the case study.Results show:(1)heterogeneity analysis,SMOTE-based OLT sample expansion strategy and slope position selection can significantly mitigate the effect of spatial heterogeneity on OLT prediction.(2)The Pearson correlation coefficient,RMSE,MAE and Lin’s CCC values are 0.84,1.173,1.378 and 0.804,respectively,indicating excellent prediction performance.This research provides an effective solution for predicting OLT distribution in hillslope regions. 展开更多
关键词 Overburden layer thickness Heterogeneity analysis Random forest regression slope position Hillslope regions
在线阅读 下载PDF
Three-dimensional stability of two-step slope with crack considering temperature effect on unsaturated soil 被引量:1
11
作者 SHAN Jun-tao WU Yi-min YANG Xiao-li 《Journal of Central South University》 2025年第3期1060-1079,共20页
In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to character... In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to characterize the strength of the backfill. However, the actual working temperature of slopes varies, and natural phenomena such as rainfall and groundwater infiltration commonly result in unsaturated soil conditions, with cracks typically present in cohesive slopes. This study introduces a novel approach for assessing the stability of unsaturated soil stepped slopes under varying temperatures, incorporating the effects of open and vertical cracks. Utilizing the kinematic approach and gravity increase method, we developed a three-dimensional (3D) rotational wedge failure mechanism to simulate slope collapse, enhancing the traditional two-dimensional analyses. We integrated temperature-dependent functions and nonlinear shear strength equations to evaluate the impact of temperature on four typical unsaturated soil types. A particle swarm optimization algorithm was employed to calculate the safety factor, ensuring our method’s accuracy by comparing it with existing studies. The results indicate that considering 3D effects yields a higher safety factor, while cracks reduce slope stability. Each unsaturated soil exhibits a distinctive temperature response curve, highlighting the importance of understanding soil types in the design phase. 展开更多
关键词 3D two-step slope cracks temperature effects UNSATURATION limit analysis
在线阅读 下载PDF
Transmedia seepage characteristics of slope-concrete stabilizing piles interface systems in cold regions 被引量:1
12
作者 FENG Xue WANG Boxin +2 位作者 WANG Qing CHEN Huie FU Lanting 《Journal of Mountain Science》 2025年第3期1015-1028,共14页
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration... Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment. 展开更多
关键词 slope Concrete stabilizing piles Interface systems Transmedia seepage Freeze–thaw cycles MICROSTRUCTURE
原文传递
Hydrological and failure process of loess-bedrock fill slopes under continuous heavy rainfall 被引量:1
13
作者 Zhiyu Guo Qiangbing Huang +3 位作者 Daijin Yu Yue Liu Mingxiang Xu Qingyu Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7208-7220,共13页
During extensive gully land consolidation projects on China's Loess Plateau,many loess-bedrock fill slopes were formed,which frequently experience shallow landslides induced by rainfall.However,studies on loess-be... During extensive gully land consolidation projects on China's Loess Plateau,many loess-bedrock fill slopes were formed,which frequently experience shallow landslides induced by rainfall.However,studies on loess-bedrock slope failure triggered by continuous heavy rainfall are limited,and the role of the soilerock interface between the original bedrock slope and fill slope in the hydrological and failure process of the slope remains unclear.In this study,we conducted a continuous rainfall model test on a loess-bedrock fill slope.During the test,the responses of volume water content,pore pressure,micro deformation,and movement of the infiltration front were observed.The hydrological process and failure mechanism were then analysed.The findings suggest that the soilerock interface is a predominant infiltration surface within the slope.Rainfall infiltration rates at the interface reach 1.24-2.80 times those of the fill slope,with peak interfacial pore water pressure exceeding that of the loess fill.Furthermore,the infiltration front moves rapidly along the interface toward the bottom of the slope,reducing interfacial cohesion between bedrock and loess.The slope failure modes are summarised into three phases:local failure→flow slide and crack penetration→multistage block retrogressive slides.The cracks generated at the slope surface serve as key determinants of the geometry and scale of shallow landslides.Therefore,we recommend targeted engineering interventions to mitigate the instability and erosion of loessebedrock fill slopes. 展开更多
关键词 Soil-rock interface Loess fill slope Continuous rainfall Interface hydrological process Failure mechanism
在线阅读 下载PDF
Seismic responses and shattering cumulative effects of bedding parallel stepped rock slope:Model test and numerical simulation 被引量:1
14
作者 Chunlei Xin Fei Yang +2 位作者 Wenkai Feng Zhao Wang Wenhui Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2009-2030,共22页
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu... Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes. 展开更多
关键词 Rock slope stability Shaking table test Numerical simulation Permanent displacement Acceleration amplification factor
在线阅读 下载PDF
3D slope stability analysis considering strength anisotropy by a microstructure tensor enhanced elasto-plastic finite element method 被引量:1
15
作者 Wencheng Wei Hongxiang Tang +1 位作者 Xiaoyu Song Xiangji Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1664-1684,共21页
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e... This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model. 展开更多
关键词 Strength anisotropy Elasto-plastic finite element method(FEM) Three-dimensional(3D)soil slope Gravity increase method(GIM) Stability analysis Case study
在线阅读 下载PDF
Simulation analysis on three-dimensional slope failure under different conditions 被引量:9
16
作者 张科 曹平 +2 位作者 刘紫曜 胡惠华 龚道平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2490-2502,共13页
The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi... The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method. 展开更多
关键词 three-dimensional slope slope stability three-dimensional effect strength reduction method failure mechanism
在线阅读 下载PDF
Small-Scale Irrigation in the Highlands of Western Cameroon: A Diagnostic Study of the Southern Slope of the Bamboutos Mountains
17
作者 Sibelle Tsague Mouafo Nasse Fetio Ngoune +1 位作者 Roger Ntankouo Njila Barthelemy Ndongo 《Agricultural Sciences》 2025年第2期256-279,共24页
Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale i... Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale irrigation can supply local and sub-regional markets with food in the off-season, it has received little research and its challenges are therefore rarely addressed. In order to contribute to the knowledge of these small-scale irrigation systems, with a view to improving their structure and the management of irrigation water and energy, an assessment of small-scale irrigation in the southern slopes of the Bamboutos Mountains has been done. After direct observations, field measurements, surveys of 100 irrigators with questionnaires and interviews with administrative managers, analyses were carried out using Xlstat software. It was found out that about 226 small-scale irrigation systems designed and managed by producers have been installed on this slope between the end of December 2022 and mid-March 2023. Intended for market garden crops, 84.96% of these irrigation systems use sprinklers and 15.04% surface irrigation (furrow irrigation). Surface or underground water is mobilized using gravity (50%), fossil fuels (34.51%), electricity (14.6%) or solar energy (0.9%). Sprinkler irrigation is mainly carried out using locally manufactured hydraulic turnstiles. There is a lack of formal associations of irrigators in an environment marked by conflicts between water users, when there is not allocation for water withdrawal. Apart from the high cost of pumping energy ($1.32 per liter of fuel), the main constraint identified, which has become more acute over the years, is the lack of irrigation water during the water shortage period (from mid-January to mid-March). These constraints have led to a transition from surface irrigation to sprinkler irrigation, and the adoption of new energy supply and water mobilization technologies. The construction of collective surface and groundwater catchment structures with solar-powered pumping systems, the setting up of formal irrigators’ associations and an irrigation support service, could improve the availability of water throughout the irrigation season, thereby helping to improve the income generated by irrigated market-garden farming on the southern slopes of the Bamboutos Mountains. 展开更多
关键词 Market Gardening Water Energy Small-Scale Irrigation Southern slope of the Bamboutos Mountains
在线阅读 下载PDF
Characterizing stratigraphically complex deepwater slope channel reservoirs for production optimization and better field management-A brown field example,offshore West Africa
18
作者 Ifeanyichukwu S.Obi John A.Adegoke +2 位作者 Akinsanmi O.Ojo Chidozie I.P.Dim Goodluck E.Adagbasa 《Energy Geoscience》 2025年第3期253-267,共15页
The dynamic relationship between field management and reservoir characterization has often been a puzzle,especially in complex deepwater channel systems.Reservoir management and infill drilling success cases were ofte... The dynamic relationship between field management and reservoir characterization has often been a puzzle,especially in complex deepwater channel systems.Reservoir management and infill drilling success cases were often due to improved understanding of deepwater depositional systems and geological controls on channel architecture and the general distribution of individual rock facies.For confined to weakly-confined slope channel complexes,some controls on the degree of channel avulsion and aggradation are the interplay between flow hydraulics,sediment calibre,depositional gradient,and the interaction of the flow with underlying substrate.This work aims at documenting the stratigraphic characterization of a Miocene deepwater channel system in a brownfield with focus on the historical evolution of the framework interpretation as well as applications of the recent updates in field management.The initial stratigraphic model(2005)was done using the layer cake concept with minimal incision,continuous shales and limited vertical connectivity based on observations from available seismic data(pre-baseline survey acquisition)and limited well control.This was modified in 2009 following acquisition of a 4D Monitor 1 seismic volume and 3 years production data from 20 wells to a more erosive model with compensationally stacked channel complexes of similar width.With new 4D Monitor 2 acquired in 2014,broadband processed seismic data in 2020,a total of 36 wells and 11 years of production,an updated framework has recently been built.In the new framework,two key fairways namely the Upper and the Lower Fairway were delineated,each comprising of 8 and 6 channel complexes,respectively.A conceptual basin-fill sequence was utilized,as well as a genetic classification of the channel complexes into erosional-confined systems,meandering systems,and levee-confined channel systems.The cut-and-fill behaviors of the individual complexes have been tied to changes in depositional gradient,sediment sand vs mud ratio,interaction of the flow with the substrate,and this has impacted the degree of channel amalgamation,avulsion and the degree of preservation of both internal and external levees.At flow unit scale,potential inter,and intra-reservoir connection pathways and compartments defined through integrated use of excess pressures,geobody attributes,well production and 4D data,have been very helpful in defining reservoir connection windows,injector-producer connectivity,and channel compartments.The implication is that this exercise or study has provided renewed insights into infill drill-well opportunities,well production performance as well as overall field management strategy. 展开更多
关键词 DEEPWATER Channel complex TURBIDITE Connectivity slope incised fill
在线阅读 下载PDF
Reliability analysis of soil slopes stabilized with piles under rainfall
19
作者 Xiangyu Ma Yuanyuan Tao +2 位作者 Meng Lu Atma Sharma Jie Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6951-6963,共13页
Reliability analysis of soil slopes under rainfall is an important task for landslide risk assessment.Previous studies rarely contribute to the probabilistic analysis of slope stability under rainfall with reinforceme... Reliability analysis of soil slopes under rainfall is an important task for landslide risk assessment.Previous studies rarely contribute to the probabilistic analysis of slope stability under rainfall with reinforcement.A new method is suggested for reliability analysis of soil slopes stabilized with piles under rainfall.First,an efficient numerical model is exploited for slope stability analysis,where two types of slope failure modes,i.e.,plastic flow and local failure are considered.To address the blocking effect of piles during seepage analysis,the equivalent hydraulic conductivity of the pile area is estimated according to the effective medium theory.The stabilizing force of piles is investigated by an analytical approach.For saving computational effort,the response surface is established based on a multi-class classification model to predict two types of slope failure modes.Finally,uncertainties in soil parameters and rainfall events are both modelled,and the failure probability of soil slopes within a given time period is assessed through Monte Carlo simulation.An illustrative example is used to demonstrate the performance of the suggested method.It is found that the slope is mainly controlled by local failure.As the pile spacing increases,the likelihood of plastic flow significantly increases.As the piles are located near the slope crest,plastic flow is effectively prevented and the slope is better stabilized against rainfall.If rainfall uncertainties are not considered,the slope failure probability is significantly overestimated.Overall,this study can provide a useful guidance for the design of pile-stabilized slopes against rainfall infiltration. 展开更多
关键词 Soil slopes PILES RAINFALL UNCERTAINTIES Reliability analysis
在线阅读 下载PDF
Climate impacts on deformation and instability of vegetated slopes
20
作者 Qi Zhang Haiyi Zhong +1 位作者 Haowen Guo Junjun Ni 《Biogeotechnics》 2025年第2期34-43,共10页
Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the perfor-mance of earthen structures.The utilization of vegetation to stabilise geotechnical infrastructures is wide... Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the perfor-mance of earthen structures.The utilization of vegetation to stabilise geotechnical infrastructures is widely recognized and embraced for its environmentally friendly attributes.The spectre of climate change further in-tensifies the focus on the effects of temperature and humidity on vegetated soil.Consequently,there is a pressing need for research exploring the influence of changing climates on vegetated infrastructures.Such research de-mands a holistic and interdisciplinary approach,bridging fields such as soil mechanics,botany,and atmospheric science.This review underscores key facets crucial to vegetated geotechnical infrastructures,encompassing climate projections,centrifuge modelling,field monitoring,and numerical methodologies. 展开更多
关键词 Vegetated slope Plant-soil interactions RAINFALL Temperature Climate change
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部