Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that s...Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.展开更多
The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and...The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.展开更多
Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale who...Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale whole slide images(WSIs)features to predict the response to breast cancer NAC more finely.Methods:This work collected 1,670 whole slide images for training and validation sets,internal testing sets,external testing sets,and prospective testing sets of the weakly-supervised deep learning-based multi-task model(DLMM)in predicting treatment response and pCR to NAC.Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations,and controls the expressiveness of each representation via a gating-based attention mechanism.Results:In the retrospective analysis,DLMM exhibited excellent predictive performance for the prediction of treatment response,with area under the receiver operating characteristic curves(AUCs)of 0.869[95%confidence interval(95%CI):0.806−0.933]in the internal testing set and 0.841(95%CI:0.814−0.867)in the external testing sets.For the pCR prediction task,DLMM reached AUCs of 0.865(95%CI:0.763−0.964)in the internal testing and 0.821(95%CI:0.763−0.878)in the pooled external testing set.In the prospective testing study,DLMM also demonstrated favorable predictive performance,with AUCs of 0.829(95%CI:0.754−0.903)and 0.821(95%CI:0.692−0.949)in treatment response and pCR prediction,respectively.DLMM significantly outperformed the baseline models in all testing sets(P<0.05).Heatmaps were employed to interpret the decision-making basis of the model.Furthermore,it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.Conclusions:The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.展开更多
0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide down...0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).展开更多
Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typ...Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.展开更多
The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the sheari...The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the shearing part in formation of landslide and controls the further development of landslide.The mechanical behavior of sliding zone soil under compression is a crucial factor in the stability analysis in landslides.In this paper,the sliding zone soil from a giant landslide in the biggest hydropower project area,Three Gorges Reservoir Area,is taken as the research case.The particlesize distribution of the sliding zone soil from this landslide is studied and fractal dimension is adopted as representation.Periodic saturation-drying is introduced as the affecting factor on sliding zone soil properties.The triaxial compression test is conducted to reveal the mechanical behavior of the soil,including stress-strain behavior,elastic modulus,failure stress and strength parameters.These behavior of sliding zone soils with different fractal dimensions are studied under the effects of periodic saturation-drying cycles.The normalized stress-strain curves are displayed for further calculation.The data considering saturation-drying cycles are obtained and compared with the experimental results.展开更多
Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,...Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper.展开更多
The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslide...The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslides are different from those of conventional gravity landslides. Their occurrences are apparently controlled by the powerful earthquake, and they are characterized by high potential energy sliding and ejection sliding. In this article, the earthquake-induced landslides are classified, the characteristics of the sliding and destruction of these landslides are described, and the rela- tionship between the earthquake and the landslides is analyzed. The Donghekou (东河口) landslide is used as an example to characterize fast-moving long-distance earthquake-induced ejection slippage and landslide. This research suggests that many phenomena and issues related to earthquake-induced land- slide are beyond current recognition and knowledge, and new methodologies should be adopted to consider the effect of the earthquake as the paramount factor in the development of landslides. Furthermore, the study of fast-moving long-distance earthquake-induced landslides can also shed light on the formation of old and ancient landslides.展开更多
Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that s...Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.展开更多
The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after ...The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.展开更多
Landslides in Tianshui Basin, Gansu Province, Northwest China, severely affect the local population and the economy;therefore,understanding their evolution and kinematics is of great interest for landslide risk assess...Landslides in Tianshui Basin, Gansu Province, Northwest China, severely affect the local population and the economy;therefore,understanding their evolution and kinematics is of great interest for landslide risk assessment and prevention. However, there is no unified classification standard for the types of loess landslides in Tianshui.In this study, we explored the landslide distribution and failure characteristics by means of field investigation,remotesensinginterpretation,geological mapping, drilling exploration and shearwave velocity tests, and established a database of Tianshui landslides. Our analysis shows that shear zones in mudstone usually develop in weak intercalated layers. Landslides occur mainly along the West Qinling faults on slopes with gradients of 10° to 25° and on southeast-and southwest-facing slopes.These landslides were classified into five types: loess landslides, loess–mudstone interface landslides, loess flow-slides, loess–mudstone plane landslides and loess–mudstone cutting landslides. We discussed the evolution and failure process of each landslide type and analyzed the formation mechanism and motion characteristics of large-scale landslides. The analysis results show that the landslides in the study area are characterized by a gentle slope, long runout and high risk. The relationship between the runout L and the vertical drop H of the large-scale landslides in the study area is L > 4 H. There are good correlations between the equivalent friction coefficient of largescale landslides and their maximum height, runout,area and volume. The sliding zone of large-scale landslides often develops in the bedrock contact zone or in a weak interlayer within mudstone. From microstructure analysis, undisturbed mudstone consists mainly of small aggregates with dispersed inter-aggregate pores, whereas sheared clay has a more homogeneous structure. Linear striations are well developed on shear surfaces, and the clay pores in those surfaces have a more uniform distribution than those in undisturbed clay.展开更多
文摘Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No.42090055)the National Major Scientific Instruments and Equipment Development Projects of China (Grant No.41827808)the National Nature Science Foundation of China (Grant No.42207216).
文摘The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.
基金supported by the National Natural Science Foundation of China(No.82371933)the National Natural Science Foundation of Shandong Province of China(No.ZR2021MH120)+1 种基金the Taishan Scholars Project(No.tsqn202211378)the Shandong Provincial Natural Science Foundation for Excellent Young Scholars(No.ZR2024YQ075).
文摘Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale whole slide images(WSIs)features to predict the response to breast cancer NAC more finely.Methods:This work collected 1,670 whole slide images for training and validation sets,internal testing sets,external testing sets,and prospective testing sets of the weakly-supervised deep learning-based multi-task model(DLMM)in predicting treatment response and pCR to NAC.Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations,and controls the expressiveness of each representation via a gating-based attention mechanism.Results:In the retrospective analysis,DLMM exhibited excellent predictive performance for the prediction of treatment response,with area under the receiver operating characteristic curves(AUCs)of 0.869[95%confidence interval(95%CI):0.806−0.933]in the internal testing set and 0.841(95%CI:0.814−0.867)in the external testing sets.For the pCR prediction task,DLMM reached AUCs of 0.865(95%CI:0.763−0.964)in the internal testing and 0.821(95%CI:0.763−0.878)in the pooled external testing set.In the prospective testing study,DLMM also demonstrated favorable predictive performance,with AUCs of 0.829(95%CI:0.754−0.903)and 0.821(95%CI:0.692−0.949)in treatment response and pCR prediction,respectively.DLMM significantly outperformed the baseline models in all testing sets(P<0.05).Heatmaps were employed to interpret the decision-making basis of the model.Furthermore,it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.Conclusions:The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.
基金supported by the National Natural Science Foundation of China(Nos.42090054,42377192)the Scientific Research Project of Power China Huadong Engineering Corporation Limited(No.KY2022-KC-02-02)the Natural Science Foundation of Hubei Province,China(No.2022CFA002)。
文摘0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).
文摘Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.
基金financially supported by the National Natural Science Foundation of China(Nos.42107194,42090054,42377182)the Fundamental Research Funds for the Central Universities(No.CUGL190810)the Open Foundation of Engineering Research Center of Rock-Soil Drilling&Excavation and Protection,Ministry of Education(No.201802)。
文摘The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the shearing part in formation of landslide and controls the further development of landslide.The mechanical behavior of sliding zone soil under compression is a crucial factor in the stability analysis in landslides.In this paper,the sliding zone soil from a giant landslide in the biggest hydropower project area,Three Gorges Reservoir Area,is taken as the research case.The particlesize distribution of the sliding zone soil from this landslide is studied and fractal dimension is adopted as representation.Periodic saturation-drying is introduced as the affecting factor on sliding zone soil properties.The triaxial compression test is conducted to reveal the mechanical behavior of the soil,including stress-strain behavior,elastic modulus,failure stress and strength parameters.These behavior of sliding zone soils with different fractal dimensions are studied under the effects of periodic saturation-drying cycles.The normalized stress-strain curves are displayed for further calculation.The data considering saturation-drying cycles are obtained and compared with the experimental results.
基金sponsored by the National Natural Science Foundation of China,China(No.52304002).
文摘Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper.
文摘The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslides are different from those of conventional gravity landslides. Their occurrences are apparently controlled by the powerful earthquake, and they are characterized by high potential energy sliding and ejection sliding. In this article, the earthquake-induced landslides are classified, the characteristics of the sliding and destruction of these landslides are described, and the rela- tionship between the earthquake and the landslides is analyzed. The Donghekou (东河口) landslide is used as an example to characterize fast-moving long-distance earthquake-induced ejection slippage and landslide. This research suggests that many phenomena and issues related to earthquake-induced land- slide are beyond current recognition and knowledge, and new methodologies should be adopted to consider the effect of the earthquake as the paramount factor in the development of landslides. Furthermore, the study of fast-moving long-distance earthquake-induced landslides can also shed light on the formation of old and ancient landslides.
文摘Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.
文摘The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.
基金This study was sponsored by National Natural Science Foundation of China(Grant No.41902269 and No.41702343)Project of China geological survey(Grant No.DD20190717)The authors express their sincere thanks to the reviewers and editor for their help.
文摘Landslides in Tianshui Basin, Gansu Province, Northwest China, severely affect the local population and the economy;therefore,understanding their evolution and kinematics is of great interest for landslide risk assessment and prevention. However, there is no unified classification standard for the types of loess landslides in Tianshui.In this study, we explored the landslide distribution and failure characteristics by means of field investigation,remotesensinginterpretation,geological mapping, drilling exploration and shearwave velocity tests, and established a database of Tianshui landslides. Our analysis shows that shear zones in mudstone usually develop in weak intercalated layers. Landslides occur mainly along the West Qinling faults on slopes with gradients of 10° to 25° and on southeast-and southwest-facing slopes.These landslides were classified into five types: loess landslides, loess–mudstone interface landslides, loess flow-slides, loess–mudstone plane landslides and loess–mudstone cutting landslides. We discussed the evolution and failure process of each landslide type and analyzed the formation mechanism and motion characteristics of large-scale landslides. The analysis results show that the landslides in the study area are characterized by a gentle slope, long runout and high risk. The relationship between the runout L and the vertical drop H of the large-scale landslides in the study area is L > 4 H. There are good correlations between the equivalent friction coefficient of largescale landslides and their maximum height, runout,area and volume. The sliding zone of large-scale landslides often develops in the bedrock contact zone or in a weak interlayer within mudstone. From microstructure analysis, undisturbed mudstone consists mainly of small aggregates with dispersed inter-aggregate pores, whereas sheared clay has a more homogeneous structure. Linear striations are well developed on shear surfaces, and the clay pores in those surfaces have a more uniform distribution than those in undisturbed clay.