针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从...针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。展开更多
简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生...简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生成合适的超像素分类,从而影响该算法的性能.为解决这一问题,首先对ERP格式的球面图像进行重采样,生成球面上近似均匀分布的球面像元数据;然后在保持球面图像数据局部相关性的基础上,将重采样数据重组为一个新的球面图像二维表示;并基于此二维表示,将球面数据的几何关系整合到SLIC算法中,最终建立球面图像SLIC算法.针对多组ERP图像分别应用SLIC算法和本文提出的算法,对比2种算法在不同聚类数量下的超像素分割结果.实验结果表明:所提出的球面图像SLIC算法在客观质量上优于原SLIC算法,所生成的超像素分割结果不受球面区域变化影响,且轮廓闭合,在球面上表现出了较好的相似性和一致性.展开更多
针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以...针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。展开更多
为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利...为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.展开更多
文摘针对简单线性迭代聚类(Simple Linear Iterative Clustering,SLIC)算法对不同图像自适应性差的问题,提出了一种基于皮尔森相关系数的自适应SLIC超像素图像分割算法。首先,通过量化非间隔进行图像预处理,并计算颜色熵作为图像复杂度,从而确定所需分割的超像素个数。其次,利用皮尔森相关系数作为相似性度量函数。最后,通过纹理特征对类内异常点进行滤除,确保种子点更新的准确性。实验结果表明,在超像素个数相同的情况下,基于皮尔森相关系数的自适应SLIC超像素图像分割算法相比主流超像素分割算法,可以获得更高的边缘命中率以及更低的欠分割率,性能优于LSC(Linear Spectral Clustering)、SLIC和SLIC0(Simple Linear Iterative Clustering Zero)算法。
文摘简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素分割算法可以直接用于等距柱状投影(equirectangular projection,ERP)的球面图像,但是投影所造成的球面数据局部相关性破坏,会导致SLIC算法在ERP图像的部分区域无法生成合适的超像素分类,从而影响该算法的性能.为解决这一问题,首先对ERP格式的球面图像进行重采样,生成球面上近似均匀分布的球面像元数据;然后在保持球面图像数据局部相关性的基础上,将重采样数据重组为一个新的球面图像二维表示;并基于此二维表示,将球面数据的几何关系整合到SLIC算法中,最终建立球面图像SLIC算法.针对多组ERP图像分别应用SLIC算法和本文提出的算法,对比2种算法在不同聚类数量下的超像素分割结果.实验结果表明:所提出的球面图像SLIC算法在客观质量上优于原SLIC算法,所生成的超像素分割结果不受球面区域变化影响,且轮廓闭合,在球面上表现出了较好的相似性和一致性.
文摘针对基于像素的道路提取方法的不足,使用一种基于超像素分割算法(Simple Linear Iterative Clustering,SLIC)和自适应阈值分割算法(OTSU算法是由日本学者OTSU于1979年提出的一种对图像进行二值化的高效算法)相结合的道路提取方法,可以较好地解决在遥感图像中分辨率较高所造成的非道路地物对目标的噪声影响。该方法使用SLIC超像素分割算法对影像进行分割处理,再用改进的K-means聚类算法对分割后的超像素影像进行非监督分类,根据GVI值对分类后的影像中的植被及水体信息进行过滤,对过滤后的影像进行基于OTSU的分割,最后对分割影像进行后处理获得完整道路网。经过定性和定量分析后得出,此方法在道路提取上有较好的表现。
文摘为解决点刻式直接零件标志(Direct part mark,DPM)码基本单元分割困难、区域定位欠精确等问题,提出使用超像素分割和谱聚类相结合的算法,对含有DPM区域的图像进行初步分割和精确定位.首先为提高超像素分割的准确、快速和完整性,本文利用近邻传播聚类思想实现自动聚类得到超像素区域,并引入边缘置信度调整超像素边缘,形成自适应边缘简单线性迭代聚类(Adaptive edge simple linear iterative clustering,AE-SLIC)算法.该算法改进了简单线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法存在的未明确界定超像素区域边缘信息和分割数目无法自适应确定等问题;其次,将超像素作为谱聚类中图的顶点进行二次聚类,DPM区域内超像素因相似度高而被聚集为一类,从而完成点刻式DPM区域的精确定位.经实验测试和分析,本文算法得到的超像素分割结果在完整性、运算复杂度等方面优于常见的超像素分割算法.与基于像素点运算的传统定位算法相比,本文算法具有良好的实时性、定位准确率和鲁棒性.