Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.F...Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.展开更多
The Iberian Peninsula is,nowadays,the main producer of roofing slate of the world.Most of the outcrops are located in the NW of the Iberian Peninsula,in the regions of Galicia,Leon,and in Portugal.The technique of wor...The Iberian Peninsula is,nowadays,the main producer of roofing slate of the world.Most of the outcrops are located in the NW of the Iberian Peninsula,in the regions of Galicia,Leon,and in Portugal.The technique of working and roofing with slate was brought from Flanders by King Felipe II by the second half of the XVI century.The most representative building from this period is the Monastery of El Escorial,N Madrid.However,the Spanish slate industry remained incipient until the 1960s,when Galicia and Leon suffered an accelerated industrialization process which greatly enhanced the volume of production.Additionally,the Portuguese slate industry was well developed by the second half of the XIX century.Most of the Portuguese production was exported,mainly to the United Kingdom.By the second half of the XX century,the Spanish,and in a lesser extent,the Portuguese roofing slate spread all over Europe,forcing most of the existing European quarries to close.Nowadays,different varieties of roofing slates are quarried,mainly in Spain,being used indistinctly in new residential construction and for restoration of historical buildings.The main importing countries are France,Germany and the United Kingdom.This work presents an overview of the history and main varieties of the Iberian roofing slate,in order to propose its inclusion as a Global Heritage Stone Province.展开更多
Slate from the Cambrian succession of North Wales is a well-known source of building products from the United Kingdom and is here advocated as a suitable“Global Heritage Stone Resource”.Its first recorded use was in...Slate from the Cambrian succession of North Wales is a well-known source of building products from the United Kingdom and is here advocated as a suitable“Global Heritage Stone Resource”.Its first recorded use was in the Roman period in Wales,and subsequently from the sixteenth century throughout the British Isles.During the 16th and 17th centuries several small companies worked the slate belt from Bethesda to the Nantlle valley but in the mid-18th these were gradually taken over or amalgamated and three large operations came to dominate the industry:Penrhyn,Dinorwic.展开更多
The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed an...The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed and effective support is of high importance for achieving safe and efficient tunnel construction.The No.2 inclined shaft of Muzhailing Tunnel was taken as the engineering background prototype,for which,a similar model test was conducted to evaluate the effect of highly pretightened constant resistance(NPR,Negative Poisson’s Ratio)anchor cable support provision to the geologically complex carbonaceous slate at different depths.Two schemes were proposed during testing:one scheme was without support and the second was with asymmetric support from highly pre-tightened constant resistance anchor cable.Digital speckle displacement analysis system and micro-groundstress sensors were employed to measure the deformation and shear stress distribution of the tunnel.The results demonstrated that through the second support scheme,the deformation of the surrounding rock could be effectively ameliorated,while this support scheme was applied on the project site of the No.2 inclined shaft,to explore the rationality of the scheme through field engineering tests.On-site monitoring indicated that the deformation of the surrounding rock was within the reasonable design range and the problem of severe tunnel deformation was effectively controlled.The research methods and related conclusions can be used as a reference for the treatment of large deformation problems in deep-buried soft rock tunnels.展开更多
Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in pa...Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in part on realistic modeling and observation of the disaster process,as well as the identification and examination of the underlying mechanisms.Based on the geological conditions and the historical records of the Xinping Tunnel on the China–Laos Railway,an engineering geological model of the water-and-mud inrush was established.A physical model test that accurately reproduced water-and-mud inrush during tunnel excavation in sandstone and slate interbedded strata was also carried out.Then,testing was conducted that examined the stress and strain,seepage pressure,and high-leakage flow of the surrounding rock.The results indicated that the water-and-mud inrush proceeded through three stages:seepage stage,high-leakage flow stage,and attenuation stage.In essence,the disaster was a catastrophic process,during which the water-resistant stratum was reduced to a critical safety thickness,a water-inrush channel formed,and the water-resistant stratum gradually failed under the influence of excavation unloading and in situ stress–seepage coupling.Parameters such as the stress and strain,seepage pressure,and flow of the surrounding rock had evident stage-related features during water-and-mud inrush,and their variation indicated the formation,development,and evolution of the disaster.As the tunnel face advanced,the trend of the stress–strain curve of the surrounding rock shifted from sluggish to rapid in its speed of increase.The characteristics of strain energy density revealed the erosion and weakening effect of groundwater on the surrounding rock.The seepage pressure and the thickness of the water-resistant stratum had a positive linear relationship,and the flow and thickness a negative linear relationship.There was a pivotal point at which the seepage pressure changed from high to low and the flow shifted from low to high.The thickness of the water-resistant stratum corresponding to the pivotal point was deemed the critical safety thickness.展开更多
Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is we...Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.展开更多
High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temper...High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.展开更多
Rock is subjected to impact loading during tunnel and subsurface engineering.For understanding the damage evolution of rock under dynamic impact, mechanical research was performed on the carboniferous slate surroundin...Rock is subjected to impact loading during tunnel and subsurface engineering.For understanding the damage evolution of rock under dynamic impact, mechanical research was performed on the carboniferous slate surrounding the Muzhailing tunnel under different influencing factors based on the Split Hopkinson Pressure Bar(SHPB)experimental system. The results show that:(1)carbonaceous slate exhibits a continuous failure process, which develops more rapidly in the presence of joints;simultaneously, a negative correlation was found between the joint density and the dynamic strength of rock;(2) under different impact velocities and wavelengths, the method of using incident energy to represent the dynamic damage threshold of carbonaceous slate under high in situ stress was proposed based on the kinetic energy theorem, and the damage threshold of carbonaceous slate was calculated to be 53 J;(3) impact times is the most critical core variable and negatively correlated with peak strength and positively correlated with strain rate, maximum strain, and cumulative damage. The carbonaceous slate is subjected to repeated load impacts, which is followed by accumulation of damage, continuous strength attenuation, and internal dominant fracture expansion. In particular,when the samples break, there is only one main rupture surface, which is the most significant difference from the single impact rupture form.展开更多
The toxicity of asbestos has been constantly an active research topic.Although asbestos has lots of advantages owing to its stable physicochemical properties and economic characteristics,nations enforce policies prohi...The toxicity of asbestos has been constantly an active research topic.Although asbestos has lots of advantages owing to its stable physicochemical properties and economic characteristics,nations enforce policies prohibiting or limiting its use because of its critical impact on human health.Especially in Korea 96% of imported asbestos are slate construction materials and with the influence of Saemaul movement,thatched roofs have been drastically replaced with slate roofs.Efforts to know the distribution characteristics of extensively used asbestos cement slates and to find out the removal method that suits the distribution characteristics are still in an insufficient state.The purpose of this work was to probe into the distribution of asbestos cement slate buildings in Korea and provide basic data of distribution characteristics for policy making in which consideration of the differences between rural and urban regions is necessary based on findings of the studies so far.It is considered helpful in many ways to solving asbestos cement slate related problems in countries where asbestos usage is increasing even after the 2000s including China.展开更多
Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete c...Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete can become the governing factor on lightweight aggregate replacement ratios. Alkali-Silica Reactison (ASR) and compressive strength of mortar samples with expanded slate, expanded glass or perlite, covering the spectrum of internal porosity and weight of lightweight aggregates, were evaluated. Scanning electron microscopy was utilized to evaluate the contribution of the aggregates’ porosity and chemical composition in inhibiting ASR. Perlite, owing to its highly porous microstructure and lower matter excelled in ASR expansion while chemical composition and denser microstructure of the heavier expanded slate resulted in more signified late ASR expansion and higher compressive strength. An attempt in visual inspection of ASR attack of alkali metal ions on silica-rich expanded glass using an ultra-accelerated exposure to sodium hydroxide solution was made</span></span><span style="font-family:Verdana;">.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.U22A20234)Hubei Province key Research and Development Project (Grant No.2023BCB121).
文摘Carbonaceous slate is one kind of metamorphic rocks with developed foliation,which is frequently encountered during tunnel construction in Western China.The foliation plays a crucial role in the stability of tunnels.For this,we conducted uniaxial compression tests,acoustic emission(AE)monitoring and scanning electron microscope(SEM)tests on carbonaceous slate.The results show that the strength,failure mode,and AE characteristics exhibit marked anisotropy with the angle between the axial and the foliation(β).Asβincreases,the ultrasonic wave velocity decreases monotonically,whereas the uniaxial compressive strength(UCS)displays a distinctive U-shaped trend.The elastic modulus initially decreases and then increases.The cumulative AE counts curve and energy curve show a stepped growth whenβ≤45°.The AE events are active during the crack compaction phase and remain calm during the linear elastic deformation phase whenβ>45°.Upon failure,the energy release accounts for the highest proportion(67%)whenβ=45°,while the proportions in other cases are less than 37%.The maximum percentage(31%)of shear cracks is reported whenβ=60°,which is six times greater than that atβ=0°.Moreover,Kernel density estimation analysis reveals that the high concentration area with low AF(AE counts/duration time)and high RA(rise time/amplitude)increases initially,and then decreases whenβ>60°.In addition,nine types of cracks and seven modes of failure were identified.The foliation angle has a pronounced impact on shear failure modes in comparison with tensile failure modes.The supports could suffer larger deformation whenβ≥60°compared to other cases.The failure behaviors correspond well with field observations.
基金grateful to the Foundation for the Scientific Research(FWO)from the Flanders Government,Belgium,for his Pegasus Marie Curie Fellowship.
文摘The Iberian Peninsula is,nowadays,the main producer of roofing slate of the world.Most of the outcrops are located in the NW of the Iberian Peninsula,in the regions of Galicia,Leon,and in Portugal.The technique of working and roofing with slate was brought from Flanders by King Felipe II by the second half of the XVI century.The most representative building from this period is the Monastery of El Escorial,N Madrid.However,the Spanish slate industry remained incipient until the 1960s,when Galicia and Leon suffered an accelerated industrialization process which greatly enhanced the volume of production.Additionally,the Portuguese slate industry was well developed by the second half of the XIX century.Most of the Portuguese production was exported,mainly to the United Kingdom.By the second half of the XX century,the Spanish,and in a lesser extent,the Portuguese roofing slate spread all over Europe,forcing most of the existing European quarries to close.Nowadays,different varieties of roofing slates are quarried,mainly in Spain,being used indistinctly in new residential construction and for restoration of historical buildings.The main importing countries are France,Germany and the United Kingdom.This work presents an overview of the history and main varieties of the Iberian roofing slate,in order to propose its inclusion as a Global Heritage Stone Province.
文摘Slate from the Cambrian succession of North Wales is a well-known source of building products from the United Kingdom and is here advocated as a suitable“Global Heritage Stone Resource”.Its first recorded use was in the Roman period in Wales,and subsequently from the sixteenth century throughout the British Isles.During the 16th and 17th centuries several small companies worked the slate belt from Bethesda to the Nantlle valley but in the mid-18th these were gradually taken over or amalgamated and three large operations came to dominate the industry:Penrhyn,Dinorwic.
基金supported by the National Key Research and Development Program of China(No.2016YFC0600901)the Fundamental Research Funds for the Central Universities(No.2015QB02)。
文摘The Muzhailing extra-long highway tunnel and corresponding inclined shafts in Lanzhou,Gansu Province,China passes through structurally complex carbonaceous slate that is under high ground stress.Rationally-designed and effective support is of high importance for achieving safe and efficient tunnel construction.The No.2 inclined shaft of Muzhailing Tunnel was taken as the engineering background prototype,for which,a similar model test was conducted to evaluate the effect of highly pretightened constant resistance(NPR,Negative Poisson’s Ratio)anchor cable support provision to the geologically complex carbonaceous slate at different depths.Two schemes were proposed during testing:one scheme was without support and the second was with asymmetric support from highly pre-tightened constant resistance anchor cable.Digital speckle displacement analysis system and micro-groundstress sensors were employed to measure the deformation and shear stress distribution of the tunnel.The results demonstrated that through the second support scheme,the deformation of the surrounding rock could be effectively ameliorated,while this support scheme was applied on the project site of the No.2 inclined shaft,to explore the rationality of the scheme through field engineering tests.On-site monitoring indicated that the deformation of the surrounding rock was within the reasonable design range and the problem of severe tunnel deformation was effectively controlled.The research methods and related conclusions can be used as a reference for the treatment of large deformation problems in deep-buried soft rock tunnels.
基金the National High-Speed Rail United Foundation of China(No.U1934213)。
文摘Water-and-mud inrush disasters have become a major challenge in underground engineering for the construction of tunnels in sandstone and slate interbedded Presinian strata.Disaster prediction and prevention rely in part on realistic modeling and observation of the disaster process,as well as the identification and examination of the underlying mechanisms.Based on the geological conditions and the historical records of the Xinping Tunnel on the China–Laos Railway,an engineering geological model of the water-and-mud inrush was established.A physical model test that accurately reproduced water-and-mud inrush during tunnel excavation in sandstone and slate interbedded strata was also carried out.Then,testing was conducted that examined the stress and strain,seepage pressure,and high-leakage flow of the surrounding rock.The results indicated that the water-and-mud inrush proceeded through three stages:seepage stage,high-leakage flow stage,and attenuation stage.In essence,the disaster was a catastrophic process,during which the water-resistant stratum was reduced to a critical safety thickness,a water-inrush channel formed,and the water-resistant stratum gradually failed under the influence of excavation unloading and in situ stress–seepage coupling.Parameters such as the stress and strain,seepage pressure,and flow of the surrounding rock had evident stage-related features during water-and-mud inrush,and their variation indicated the formation,development,and evolution of the disaster.As the tunnel face advanced,the trend of the stress–strain curve of the surrounding rock shifted from sluggish to rapid in its speed of increase.The characteristics of strain energy density revealed the erosion and weakening effect of groundwater on the surrounding rock.The seepage pressure and the thickness of the water-resistant stratum had a positive linear relationship,and the flow and thickness a negative linear relationship.There was a pivotal point at which the seepage pressure changed from high to low and the flow shifted from low to high.The thickness of the water-resistant stratum corresponding to the pivotal point was deemed the critical safety thickness.
基金funded by the German Federal Ministry for Economic Affairs(FKZ 0325279B)
文摘Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.
基金supported by National Natural Science Foundation of China(Grant No.41230635)Projects of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2013Z004)+1 种基金The Cultivating programme of middle-aged backbone teachers of Chengdu University of Technology(Grant No.JXGG201703)Key Projects of Education Department of Sichuan Province(Grant No.16ZA0095)
文摘High geothermal temperatures appear to be unfavorable for the construction of tunnels in slate rocks with high overburden. To investigate the mechanical characteristics of slates at various levels of geothermal temperature, conventional triaxial compression tests at different levels of confining stress were carried out at 4 different temperatures from 20℃ to 120℃. The obtained results show high confining pressures weaken the thermal effects on rock mechanical characteristics while higher temperatures enhance the effect of confining pressure.At higher levels of confining stress the thermal effects on the rock strength characteristics decrease. The higher the temperature, the larger is the effect of confining pressure on the mechanical characteristics of the slate. Increase of temperature leads to a decrease of the peak strength but increases the deformability and ductility of the slate, the thermo effect on the peak strength and Poisson's ratio is larger than on the elastic modulus. Higher temperatures reduce the shear strength of slate, the decrease is mainly caused by a decrease of the cohesion. In general, the slate samples fail in shear failure.
基金the financial support from the Key Special Project of the National Natural Science Foundation of China(Grant No.41941018)the Special Fund of Yueqi Scholars(Grant No.800015Z1207)。
文摘Rock is subjected to impact loading during tunnel and subsurface engineering.For understanding the damage evolution of rock under dynamic impact, mechanical research was performed on the carboniferous slate surrounding the Muzhailing tunnel under different influencing factors based on the Split Hopkinson Pressure Bar(SHPB)experimental system. The results show that:(1)carbonaceous slate exhibits a continuous failure process, which develops more rapidly in the presence of joints;simultaneously, a negative correlation was found between the joint density and the dynamic strength of rock;(2) under different impact velocities and wavelengths, the method of using incident energy to represent the dynamic damage threshold of carbonaceous slate under high in situ stress was proposed based on the kinetic energy theorem, and the damage threshold of carbonaceous slate was calculated to be 53 J;(3) impact times is the most critical core variable and negatively correlated with peak strength and positively correlated with strain rate, maximum strain, and cumulative damage. The carbonaceous slate is subjected to repeated load impacts, which is followed by accumulation of damage, continuous strength attenuation, and internal dominant fracture expansion. In particular,when the samples break, there is only one main rupture surface, which is the most significant difference from the single impact rupture form.
基金Funded by a grant(12High-tech C20)from High-tech Urban Development Program from by Ministry of Land,Transport and Maritime Affairs of Korea
文摘The toxicity of asbestos has been constantly an active research topic.Although asbestos has lots of advantages owing to its stable physicochemical properties and economic characteristics,nations enforce policies prohibiting or limiting its use because of its critical impact on human health.Especially in Korea 96% of imported asbestos are slate construction materials and with the influence of Saemaul movement,thatched roofs have been drastically replaced with slate roofs.Efforts to know the distribution characteristics of extensively used asbestos cement slates and to find out the removal method that suits the distribution characteristics are still in an insufficient state.The purpose of this work was to probe into the distribution of asbestos cement slate buildings in Korea and provide basic data of distribution characteristics for policy making in which consideration of the differences between rural and urban regions is necessary based on findings of the studies so far.It is considered helpful in many ways to solving asbestos cement slate related problems in countries where asbestos usage is increasing even after the 2000s including China.
文摘Lightweight aggregates are increasingly used in concrete construction. They reduce concrete selfweight furnishing a structural advantage. In contrast, the mechanical properties and durability of lightweight concrete can become the governing factor on lightweight aggregate replacement ratios. Alkali-Silica Reactison (ASR) and compressive strength of mortar samples with expanded slate, expanded glass or perlite, covering the spectrum of internal porosity and weight of lightweight aggregates, were evaluated. Scanning electron microscopy was utilized to evaluate the contribution of the aggregates’ porosity and chemical composition in inhibiting ASR. Perlite, owing to its highly porous microstructure and lower matter excelled in ASR expansion while chemical composition and denser microstructure of the heavier expanded slate resulted in more signified late ASR expansion and higher compressive strength. An attempt in visual inspection of ASR attack of alkali metal ions on silica-rich expanded glass using an ultra-accelerated exposure to sodium hydroxide solution was made</span></span><span style="font-family:Verdana;">.