期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Phosphorylation-dependent activation of MAP4K1/2 by OST1 mediates ABA-induced stomatal closure in Arabidopsis
1
作者 Dongxue Tang Dan Pei +7 位作者 Meixiang Zhang Xiaoying Hu Minmin Lu Zhen Li Yu Wang Yi Wang Shuhua Yang Zhizhong Gong 《Journal of Integrative Plant Biology》 2025年第11期2912-2928,共17页
In higher plants,stomatal movements represent a critical physiological process that matains cellular water homestasis while enabling photosynthetic gas exchange.Open stomata 1(OST1),a key protein kinase in the abscisi... In higher plants,stomatal movements represent a critical physiological process that matains cellular water homestasis while enabling photosynthetic gas exchange.Open stomata 1(OST1),a key protein kinase in the abscisic acid(ABA)signaling cascade,has been established as a central regulator of stomatal dynamics.This study reveals that two highly conserved mitogen-activated protein kinase 1(MAP4K1)and MAP4K2 are positive regulators in ABA promoted stomatal closure,and ABA-activated OST1 potentiates MAP4K1/2 through phosphorylation at conserved serine and threonine residues(S166,T170,and S479/S488).The activated MAP4K1,in turn,phosphorylates two critical downstream targets:plasma membrane H+-ATPase 2(AHA2)at residues T858,T881,and Y946,and slow anion channel-associated 1(SLAC1)at T114 and S116.Functional analysis demonstrates that the phosphomimetic(3D:S166D/T170D/S479D)MAP4K1,but not non-phosphorylatable(3A:S166A/T170A/S479A)MAP4K1,could fully restore drought tolerance and reduced water loss in detached leaves of map4k1map4k2 double mutant.Our findings delineate a previously unrecognized signaling module comprising OST1-MAP4K1/2-AHA2/SLAC1,which crucially modulates ABA-mediated stomatal regulation.This work advances our mechanistic understanding of phosphorylation cascades governing plant water relations and stress responses. 展开更多
关键词 AHA2 MAP4K1/2 OST1 slac1 stomatal movements
原文传递
ABA Signaling in Guard Cells Entails a Dynamic Protein-Protein Interaction Relay from the PYL-RCAR Family Receptors to Ion Channels 被引量:13
2
作者 Sung Chul Lee Chae Woo Lim +2 位作者 Wenzhi Lan Kai He Sheng Luan 《Molecular Plant》 SCIE CAS CSCD 2013年第2期528-538,共11页
Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trig-ger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1,... Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trig-ger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity. 展开更多
关键词 abscisic acid ABA receptor protein kinase protein phosphatase slac1.
原文传递
Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice 被引量:2
3
作者 Xiaolei Fan Jiemin Wu +4 位作者 Taiyu Chen Weiwei Tie Hao Chen Fei Zhou Yongjun Lin 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第12期1063-1077,共15页
Plants absorb sunlight to power the photochem- ical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mech- anism that protects chloroplasts from the damage remains u... Plants absorb sunlight to power the photochem- ical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mech- anism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss- of-function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H^O2 and abscisic acid levels were significantly higher in slac7-1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7-1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slat7- 1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7-1. When grown in dark conditions, slac7-1 displayed a normal phenotype. 5LAC7 under the control of the AtSLAC1 promoter could partially complement thephenotypes of Arabidopsis slacl mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice. 展开更多
关键词 Anion transport CHLOROPLAST CYTOKININ Oryza sativa L PHOTOINHIBITION slac1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部