After fracturing in the pilot area,channeling occurs at a low fracture angle(15).Based on the resistance-water saturation relationship,three-dimensional physical simulation methods are used in the laboratory to study ...After fracturing in the pilot area,channeling occurs at a low fracture angle(15).Based on the resistance-water saturation relationship,three-dimensional physical simulation methods are used in the laboratory to study the effect of different fracture angles and lengths on the residual oil distribution during the displacement process.Meanwhile,recovery percent,displacement efficiency and expanding sweep co-efficient to the improvement of recovery percent are also discussed.The results show that the fracture angle and length are closely related to the oil saturation distribution in these models.As the fracture angle increases,the sweep coefficient decreases(0.2412→0.1463),and the recovery percent also in-creases(46.16→56.88%),but the extent of increase has been reduced(7.96→2.96%).The extension of the fracture length is more prone to have a cross-flow phenomenon;the sweep coefficient is reduced(0.2412→0.1463).Compared to the model with 1/2 oil-water well spacing,the recovery percent is decreased by 14.29%.In different fracture models,the increasable sweep coefficient has a greater impact on oil recovery than the increasable displacement efficiency(71.30→28.70%).展开更多
In the thin slab continuous casting (TSCC) of steel, the issue of optimum fluid flow is very important due to higher casting speeds and has direct influence on the formation of solidified shells and the quality of f...In the thin slab continuous casting (TSCC) of steel, the issue of optimum fluid flow is very important due to higher casting speeds and has direct influence on the formation of solidified shells and the quality of final products. In the current work, a full-scale physical mod- eling of a thin slab easter on the basis of dimensionless Reynolds and Froude similarity criteria was constructed. The flow pattern in the funnel shaped mold with a new tetra-furcated submerged entry nozzle (SEN) was investigated. To determinate optimum operational parameters, some experiments were carried out under various casting conditions. The results show that the tetra-furcated design of the nozzle leads to a special flow pattern in the mold cavity with three-dimensional recirculating flow. It is also shown that the increase of casting speed and gas injection results in surface turbulence. On the other hand, using a higher depth of SEN decreases the vortex in the free surface of the caster. To avoid surface turbulent and related casting problems, it is recommended to use 30-cm and 40-cm SEN depth at the casting speeds of 3.5 and 4.5 m/min, respectively.展开更多
Combining with the physical model of level fluctuation in a thick slab continuous casting mold with the cross-section of 1500 mm×280 mm and argon blowing, the rationalities of estimating the level fluctuation by ...Combining with the physical model of level fluctuation in a thick slab continuous casting mold with the cross-section of 1500 mm×280 mm and argon blowing, the rationalities of estimating the level fluctuation by three traditional quantitative approaches were discussed, and the effects of gas flowrate, casting speed, and the immersion depth of submerged entry nozzle (SEN) on the level fluctuation were also investigated. As a result, it seems that three traditional quantitative approaches are not very suitable for estimating the level fluctuation in a mold with argon blowing, so a new approach for estimating level fluctuation in the mold with argon blowing was presented. The experimental results show that the level fluctuation is mainly in the region around the nozzle wall. When the casting speeds are larger than a certain value, there is the escape of large bubbles near the nozzle wall, which causes an obvious increase of level fluctuation. Furthermore, optimal process parameters, viz., the gas flowrate of 6 NL/min, the casting speed of 1.1 m/min, and the immersion depth of 170 mm, are presented to restrain the level fluctuation by a physical model.展开更多
The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the she...The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.展开更多
A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field i...A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.展开更多
A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-por...A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-porosity technique was used to represent the solidification,and Darcy law was adopted to simulate the flow in mushy region.The prediction for steel flow and solidification was evaluated by the comparison of two turbulence models.It is found that both Lam-Bremhorst low-Reynolds-number and high-Reynolds-number k-ε models predict the same trend of the steel flow and temperature distribution.However,due to the effect of turbulent flow on heat transfer,the low-Reynolds-number turbulence model predicts longer penetration depth of molten steel in sub-mold region,less shell growth and higher shell surface temperature at the narrow face compared with standard k-ε model.展开更多
The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing...The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing the formation of the internal cracks was established, in which the strains at the solidifying front caused by' bulging, straightening or unbending, and roll misalignment were calculated and compared with a critical strain value to estimate whether the internal cracks form. Moreover, the established model was appliedto a real slab caster to reveal the distribution of the strains in casting direction and its effect on the internal cracks. It was proved that themodel was reliable and useful for optimizing the operation of continuous casting.展开更多
Dynamic model control technologies of secondary cooling and soft reduction of Baosteel are introduced. Model principle and control system architecture are summarized, as well as functions and features. Finally, applic...Dynamic model control technologies of secondary cooling and soft reduction of Baosteel are introduced. Model principle and control system architecture are summarized, as well as functions and features. Finally, applications of model technologies are discussed. The self-developed dynamic secondary cooling model and the dynamic soft reduction model have been applied on several casting machines inside and outside Baosteel, desired control effects were achieved with good stability and reliability. Temperature measurement results verified the correctness of model.展开更多
Model study is an efficient method for optimizing the siructure of the mould and the submerged entry nozzle (SEN). Based on the similarity criteria, a full-scale water model has been established in accordance with the...Model study is an efficient method for optimizing the siructure of the mould and the submerged entry nozzle (SEN). Based on the similarity criteria, a full-scale water model has been established in accordance with the mould of thin-slab caster of the CSP (Compact Strip Production) operation. The effects of SEN structure including outlet area, outflow angle, nozzle width, thick-ness and immersion depth have been studied under high speed casting by measuring the amplitude and the impetus of top waves. By the orthogonal experiment design, not only the influence of the faCtors was estimated, but also the optimum work condition was judged. The rules of the fluid flow phenomena were summarized. The principle for choosing a reasonable structure of SEN was discussed.展开更多
对拟建水泥厂项目进行环境风险评价,采用SLAB模型预测氨发生泄漏扩散到大气下风向的浓度分布。预测结果表明:发生泄漏后,对LC50(半致死浓度)最大影响距离为10.8 m,对IDLH(Immediately Dangerous to Life or Health,立即威胁生命和健康)...对拟建水泥厂项目进行环境风险评价,采用SLAB模型预测氨发生泄漏扩散到大气下风向的浓度分布。预测结果表明:发生泄漏后,对LC50(半致死浓度)最大影响距离为10.8 m,对IDLH(Immediately Dangerous to Life or Health,立即威胁生命和健康)能达到的最大影响距离为22.1 m,对居住区最高容许浓度最大影响距离为33.4 m,氨水泄漏的环境风险水平为可以接受。同时还提出了环境风险防范措施,水泥厂环境风险评价可为该项目建设决策提供技术依据。展开更多
To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories...To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.展开更多
The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool re...The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool remains unchanged when the height of ingot is approximately 2.5-3 times the thickness of slab ingot. The change in the shape of pool is found to be strongly dependent on the pattern of melting rate, and hence, the power input; the depth of the molten pool increases with the increase in melting speed. It is concluded that a transient heat transfer model has to be used to obtain reliable input information for the entire, operatina time.展开更多
文摘After fracturing in the pilot area,channeling occurs at a low fracture angle(15).Based on the resistance-water saturation relationship,three-dimensional physical simulation methods are used in the laboratory to study the effect of different fracture angles and lengths on the residual oil distribution during the displacement process.Meanwhile,recovery percent,displacement efficiency and expanding sweep co-efficient to the improvement of recovery percent are also discussed.The results show that the fracture angle and length are closely related to the oil saturation distribution in these models.As the fracture angle increases,the sweep coefficient decreases(0.2412→0.1463),and the recovery percent also in-creases(46.16→56.88%),but the extent of increase has been reduced(7.96→2.96%).The extension of the fracture length is more prone to have a cross-flow phenomenon;the sweep coefficient is reduced(0.2412→0.1463).Compared to the model with 1/2 oil-water well spacing,the recovery percent is decreased by 14.29%.In different fracture models,the increasable sweep coefficient has a greater impact on oil recovery than the increasable displacement efficiency(71.30→28.70%).
文摘In the thin slab continuous casting (TSCC) of steel, the issue of optimum fluid flow is very important due to higher casting speeds and has direct influence on the formation of solidified shells and the quality of final products. In the current work, a full-scale physical mod- eling of a thin slab easter on the basis of dimensionless Reynolds and Froude similarity criteria was constructed. The flow pattern in the funnel shaped mold with a new tetra-furcated submerged entry nozzle (SEN) was investigated. To determinate optimum operational parameters, some experiments were carried out under various casting conditions. The results show that the tetra-furcated design of the nozzle leads to a special flow pattern in the mold cavity with three-dimensional recirculating flow. It is also shown that the increase of casting speed and gas injection results in surface turbulence. On the other hand, using a higher depth of SEN decreases the vortex in the free surface of the caster. To avoid surface turbulent and related casting problems, it is recommended to use 30-cm and 40-cm SEN depth at the casting speeds of 3.5 and 4.5 m/min, respectively.
基金supported by the Fundamental Research Funds for the Central Universities (No.100402017)China Postdoctoral Science Foundation (No.20080431153)Scientific Research Foundation for Doctor of Liaoning Province, China (No.20071020)
文摘Combining with the physical model of level fluctuation in a thick slab continuous casting mold with the cross-section of 1500 mm×280 mm and argon blowing, the rationalities of estimating the level fluctuation by three traditional quantitative approaches were discussed, and the effects of gas flowrate, casting speed, and the immersion depth of submerged entry nozzle (SEN) on the level fluctuation were also investigated. As a result, it seems that three traditional quantitative approaches are not very suitable for estimating the level fluctuation in a mold with argon blowing, so a new approach for estimating level fluctuation in the mold with argon blowing was presented. The experimental results show that the level fluctuation is mainly in the region around the nozzle wall. When the casting speeds are larger than a certain value, there is the escape of large bubbles near the nozzle wall, which causes an obvious increase of level fluctuation. Furthermore, optimal process parameters, viz., the gas flowrate of 6 NL/min, the casting speed of 1.1 m/min, and the immersion depth of 170 mm, are presented to restrain the level fluctuation by a physical model.
文摘The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling. Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.
基金This work was financially sponsored by Jiangsu Youth Science Foundation (No.JDQ2001003).
文摘A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab.
文摘A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-porosity technique was used to represent the solidification,and Darcy law was adopted to simulate the flow in mushy region.The prediction for steel flow and solidification was evaluated by the comparison of two turbulence models.It is found that both Lam-Bremhorst low-Reynolds-number and high-Reynolds-number k-ε models predict the same trend of the steel flow and temperature distribution.However,due to the effect of turbulent flow on heat transfer,the low-Reynolds-number turbulence model predicts longer penetration depth of molten steel in sub-mold region,less shell growth and higher shell surface temperature at the narrow face compared with standard k-ε model.
文摘The internal cracks in continuously cast slabs are attributed to the excessive tensile strain occurring at the solidifying frontduring the continuous casting process. Based on the understanding, a model for diagnosing the formation of the internal cracks was established, in which the strains at the solidifying front caused by' bulging, straightening or unbending, and roll misalignment were calculated and compared with a critical strain value to estimate whether the internal cracks form. Moreover, the established model was appliedto a real slab caster to reveal the distribution of the strains in casting direction and its effect on the internal cracks. It was proved that themodel was reliable and useful for optimizing the operation of continuous casting.
文摘Dynamic model control technologies of secondary cooling and soft reduction of Baosteel are introduced. Model principle and control system architecture are summarized, as well as functions and features. Finally, applications of model technologies are discussed. The self-developed dynamic secondary cooling model and the dynamic soft reduction model have been applied on several casting machines inside and outside Baosteel, desired control effects were achieved with good stability and reliability. Temperature measurement results verified the correctness of model.
文摘Model study is an efficient method for optimizing the siructure of the mould and the submerged entry nozzle (SEN). Based on the similarity criteria, a full-scale water model has been established in accordance with the mould of thin-slab caster of the CSP (Compact Strip Production) operation. The effects of SEN structure including outlet area, outflow angle, nozzle width, thick-ness and immersion depth have been studied under high speed casting by measuring the amplitude and the impetus of top waves. By the orthogonal experiment design, not only the influence of the faCtors was estimated, but also the optimum work condition was judged. The rules of the fluid flow phenomena were summarized. The principle for choosing a reasonable structure of SEN was discussed.
文摘对拟建水泥厂项目进行环境风险评价,采用SLAB模型预测氨发生泄漏扩散到大气下风向的浓度分布。预测结果表明:发生泄漏后,对LC50(半致死浓度)最大影响距离为10.8 m,对IDLH(Immediately Dangerous to Life or Health,立即威胁生命和健康)能达到的最大影响距离为22.1 m,对居住区最高容许浓度最大影响距离为33.4 m,氨水泄漏的环境风险水平为可以接受。同时还提出了环境风险防范措施,水泥厂环境风险评价可为该项目建设决策提供技术依据。
基金supported by the National Natural Science Foundation of China (No.50174031)
文摘To predict and optimize the temperature distribution of slab continuous casting in steady operational state, a three-dimensional model (named "offline model") based on the heat transfer and solidification theories was developed. Both heat transfer and flux distribution characteristics of the nozzle sprays on the slab were considered, and the complicated boundary conditions, such as spray cooling, natural convection, thermal radiation as well as contact cooling of individual rolls were involved in the model. By using the calibrated caster dependent model factors, the calculated temperature and shell thickness accorded well with the measured. Furthermore, a dynamic secondary water cooling control system was also developed on the basis of a two-dimensional transient heat transfer model (named "online model") and incremental PID control algorithm to reduce slab surface temperature fluctuation in unsteady state. Compared with the traditional spray table control method, the present online model and dynamic PID control demonstrate a higher capability and flexibility to adjust cooling water flowrate and reduce slab surface temperature fluctuation when the casting speed is changed.
文摘The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool remains unchanged when the height of ingot is approximately 2.5-3 times the thickness of slab ingot. The change in the shape of pool is found to be strongly dependent on the pattern of melting rate, and hence, the power input; the depth of the molten pool increases with the increase in melting speed. It is concluded that a transient heat transfer model has to be used to obtain reliable input information for the entire, operatina time.