期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Quasi-in-situ Observation and SKPFM Studies on Phosphate Protective Film and Surface Micro-Galvanic Corrosion in Biological Mg-3Zn-xNd Alloys
1
作者 Zhaochen Yu Kaixuan Feng +5 位作者 Shuyun Deng Yang Chen Hong Yan Honggun Song Chao Luo Zhi Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期648-664,共17页
The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelv... The phosphate protective film and micro-galvanic corrosion of biological Mg-3Zn-xNd (x = 0, 0.6, 1.2) alloys were investigated by scanning and transmission electron microscopy, quasi-in-situ observation, scanning Kelvin probe force microscopy (SKPFM) and electrochemical tests. The results revealed the Mg-Zn-Nd phases formed in Mg-3Zn alloy contained with Nd. Adding Nd resulted in a significant decline in the cracks of the phosphate protective film and micro-galvanic corrosion of alloys, which were recorded by quasi-in-situ observation. In addition, the Volta potential difference of Mg-Zn-Nd/α-Mg (~ 188 mV) was lower than MgZn/α-Mg (~ 419 mV) and Zn-rich/α-Mg (~ 260 mV), and the corrosion rates of alloys markedly decreased after the addition of 0.6 wt% Nd. The improvement in corrosion resistance of Nd-containing alloys was mainly attributed to the following: (i) the addition of Nd reduced the Volta potential difference (second phases/α-Mg);(ii) the phosphate protective film containing Nd_(2)O_(3) deposited on the surface of the alloys, effectively preventing the penetration of harmful anions. 展开更多
关键词 Magnesium alloys Quasi-in-situ observation Phosphate protective film Scanning Kelvin probe force microscopy(skpfm) Micro-galvanic corrosion
原文传递
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld
2
作者 Leslie G.(Bland)Miller Corey M.Efaw +6 位作者 Rebecca F.Schaller Kari Higginbotham Steve D.Johns Paul H.Davis Elton Graugnard John R.Scully Michael F.Hurley 《Journal of Magnesium and Alloys》 2025年第1期193-206,共14页
Sections of a magnesium alloy,AZ31B,joined with tungsten inert gas(TIG)welding,were examined with scanning electrochemical microscopy(SECM)and scanning Kelvin probe force microscopy(SKPFM)to investigate corrosion mech... Sections of a magnesium alloy,AZ31B,joined with tungsten inert gas(TIG)welding,were examined with scanning electrochemical microscopy(SECM)and scanning Kelvin probe force microscopy(SKPFM)to investigate corrosion mechanisms by correlating observed corrosion behavior with weld-affected microstructural variations.Insight into the changing nature of the galvanic couples between weld zones and at localized microgalvanic sites were investigated using SECM and SKPFM to map both electrochemically active regions and Volta potential differences across the weld-affected zones.The formation of an Al-Zn solidification network in the fusion zone(FZ)at and near the TIG weld epicenter differs from the outer heat-affected zone(HAZ),where intermetallic particles(IMPs)are the notable secondary phase from the magnesium matrix.These microstructures were mapped with SKPFM before and after brief exposure to a salt solution,revealing micro-galvanic couples as the main driving force to corrosion initiation and propagation within each zone.The IMPs and Al-Zn solidification network act as strong cathodes and govern the corrosion processes.The galvanic coupling and evolution of the intrinsic corrosion behavior between the weld zones is explained by monitoring the hydrogen evolution reaction(HER)with SECM over time.Anodically induced cathodic activation is confirmed for this welded material,as micro-galvanic couples between microstructural features are found to transition over time to broad electrochemically active areas within the weld-affected zones,resulting in polarity reversal as time of exposure proceeds.©2025 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd. 展开更多
关键词 Scanning electrochemical microscopy(SECM) Scanning kelvin probe force microscopy(skpfm) Hydrogen evolution reaction(HER) Anodically induced cathodic activation
在线阅读 下载PDF
5182铝合金表面锆化膜的制备及其性能研究 被引量:4
3
作者 王正曦 麻彦龙 +5 位作者 吴海鹏 廖益 张洪雨 林子皓 张毅 杜棋忠 《表面技术》 EI CAS CSCD 北大核心 2018年第9期206-213,共8页
目的提高5182铝合金的耐蚀性能及与有机漆膜的结合力。方法采用氟锆酸试剂与5182铝合金反应制备锆化膜,探究锆化液pH值、浸泡时间对锆化膜耐蚀性能的影响,并优化制膜工艺。采用SEM、EDS能谱仪及超薄切片仪分析锆化膜的微观结构和成分,结... 目的提高5182铝合金的耐蚀性能及与有机漆膜的结合力。方法采用氟锆酸试剂与5182铝合金反应制备锆化膜,探究锆化液pH值、浸泡时间对锆化膜耐蚀性能的影响,并优化制膜工艺。采用SEM、EDS能谱仪及超薄切片仪分析锆化膜的微观结构和成分,结合SKPFM分析合金中第二相颗粒的电位对锆化膜形成机理的影响,采用EIS对锆化膜的耐蚀性能进行评价分析,采用涂层附着力自动划痕仪评价锆化涂层对巴斯夫有机漆膜结合力的影响。结果制备锆化膜的最佳工艺为:pH=4.5,浸泡时间2.5 min。在5182铝合金表面制备了一层50~100 nm厚的锆化膜,且该锆化膜优先在阴极性的第二相颗粒上形成。EIS分析表明,在Na_2B_4O_7×10H_2O和NaOH水溶液中,锆化处理试样的低频阻抗值比未锆化处理试样高80?。划痕测试表明,锆化处理试样与未锆化处理试样相比,其临界载荷提高了75%。结论经过锆化最佳工艺处理后,5182铝合金的耐蚀性能提高,且锆化涂层作为中间层,能显著提高有机漆膜与合金基体的结合强度。 展开更多
关键词 5182铝合金 锆化膜结构 耐蚀性能 电化学阻抗谱 skpfm 附着力
在线阅读 下载PDF
(Gd,Y)相对GW103K时效合金局部腐蚀的影响 被引量:3
4
作者 于爽 贾瑞灵 +2 位作者 张函 张伟 郭锋 《材料研究学报》 EI CAS CSCD 北大核心 2019年第3期199-208,共10页
对Mg-10Gd-3Y-0.4Zr(GW103K)合金进行193 h时效处理,使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观测块状和链状相的微观结构和腐蚀形貌,使用扫描开尔文探针显微镜(SKPFM)测试块状相和链状相与基体之间的相对电势差,研究了这些相对GW... 对Mg-10Gd-3Y-0.4Zr(GW103K)合金进行193 h时效处理,使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观测块状和链状相的微观结构和腐蚀形貌,使用扫描开尔文探针显微镜(SKPFM)测试块状相和链状相与基体之间的相对电势差,研究了这些相对GW103K合金局部腐蚀的影响。结果表明:分布在晶内和晶界的单独块状相为Mg2(Gd, Y)相,(Gd, Y)固溶体与Mg2(Gd, Y)相交替排列形成链状相。(Gd, Y)固溶体和Mg2(Gd, Y)相的相对电势均高于基体,与相邻基体形成微电池,(Gd, Y)固溶体和Mg2(Gd, Y)相作为阴极促进了周围基体的腐蚀。尽管(Gd,Y)固溶体与基体之间的相对电势差更大,但是与基体的相界面为共格界面,界面能低、化学稳定性高,因此对基体腐蚀没有更强烈的影响。 展开更多
关键词 金属材料 镁合金 腐蚀微电偶 skpfm (Gd Y)相 相对电势
原文传递
金属铀环境腐蚀的表面状态研究 被引量:5
5
作者 仲敬荣 褚明福 +2 位作者 肖洒 肖吉群 邹乐西 《核化学与放射化学》 CAS CSCD 北大核心 2010年第1期27-34,共8页
采用显微激光拉曼和傅立叶变换红外光谱技术,结合扫描开尔文力显微镜,在线研究了金属铀在大气环境中、一定温度范围内样品表面腐蚀的微区形貌和反应产物的变化情况。结果表明,金属铀在室温时表面微区形貌呈球形凸凹粒状不均匀分布,且在... 采用显微激光拉曼和傅立叶变换红外光谱技术,结合扫描开尔文力显微镜,在线研究了金属铀在大气环境中、一定温度范围内样品表面腐蚀的微区形貌和反应产物的变化情况。结果表明,金属铀在室温时表面微区形貌呈球形凸凹粒状不均匀分布,且在颗粒边缘和凹坑处表面电位较高,易发生点蚀。在大气环境条件下会吸附空气中的O2、H2O和CO2反应生成UO2、铀酰化物和碳酸盐等,不同温度加热,铀表面首先出现活性腐蚀亮斑,并逐渐积累长大,其主要氧化产物UO2在260℃以上开始转化为U3O8。 展开更多
关键词 腐蚀 拉曼 红外 开尔文力显微镜
在线阅读 下载PDF
Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment 被引量:13
6
作者 Jing Liu Lixin Yang +5 位作者 Chunyan Zhang Bo Zhang Tao Zhang Yang Li Kaiming Wu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第8期1644-1654,共11页
The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope(SKPFM) analysis. ... The effects of heat-treatment on corrosion behavior of Mg-15Gd-2Zn-0.39Zr alloys were investigated through microstructure characterization, corrosion tests, and scanning Kelvin probe force microscope(SKPFM) analysis. In long-term corrosion experiments, the corrosion rates of Mg-Gd-Zn-Zr alloys were mainly determined by the effects of micro-galvanic corrosion. During heat-treatment, the β-(Mg,Zn)3Gd eutectic phase in as-cast alloys transformed into a long-period stacking ordered(LPSO) phase, coupled with the precipitation of small precipitates. As heat-treatment proceeded, the local potential and the volume fraction of the LPSO phases reduced gradually compared with the eutectic phase, which resulted in a remarkable decrease of the micro-galvanic effect between the second phase and Mg matrix. As a result, the corrosion resistance of heat-treated alloys improved significantly. 展开更多
关键词 Mg-Gd-Zn-Zr ALLOY Corrosion behavior Heat-treatment LPSO phase skpfm
原文传递
基于扫描开尔文探针力显微镜的金属中局部氢分布测试方法研究 被引量:2
7
作者 顾超华 朱盛依 +4 位作者 郑津洋 李炎华 张林 骆承法 花争立 《表面技术》 EI CAS CSCD 北大核心 2019年第10期329-335,共7页
目的探明金属材料中局部氢分布及演化特性是揭示其高压氢脆机理、预测承载件服役性能的重要基础。由于材料中局部氢分布测试难度大,目前各种测试研究方法都存在缺点和不足。方法利用扫描开尔文探针力显微镜(SKPFM)进行金属中局部氢分布... 目的探明金属材料中局部氢分布及演化特性是揭示其高压氢脆机理、预测承载件服役性能的重要基础。由于材料中局部氢分布测试难度大,目前各种测试研究方法都存在缺点和不足。方法利用扫描开尔文探针力显微镜(SKPFM)进行金属中局部氢分布研究具有空间分辨率高、测试无损的特点,但其测试结果影响因素多,亟待建立相应的测试可靠性保障方法。较为系统的研究了关键测试参数、试验温度、试验气氛环境等对SKPFM测试结果的影响规律。基于上述影响SKPFM测试结果的因素及其影响规律,建立了相对应的控制策略,完善了基于SKPFM的金属近表面局部氢分布测试方法,并对该方法的有效性进行了验证。最后,利用建立的方法研究了高温高压充氢后S30408中氢分布的演化规律。结果对于特定的激振频率,总存在一个激振相位的最佳区间,在此区间内CPD测试的误差最小,且数据稳定性高,激振频率的变化会导致最佳相位区间的变化;空气中的水分和氧气不仅对CPD整体值影响较大,还改变了不同位置处CPD的差值。根据对高温高压充氢后S30408中氢分布的演化规律的观察,氢在S30408中扩散速度随晶向的不同存在差异性。结论利用SKPFM可以有效的测试金属近表面局部氢分布,为金属材料氢脆机理的研究提供了支撑。 展开更多
关键词 高压氢脆 局部氢分布 扫描开尔文探针力显微镜 接触电势差 奥氏体不锈钢 晶向
在线阅读 下载PDF
Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel 被引量:9
8
作者 Meihui Sun Xiaojia Yang +6 位作者 Cuiwei Du Zhiyong Liu Yong Li Yumin Wu Hongyu San Xiandong Su Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期175-189,共15页
In this work,the beneficial effect of Sn addition on the corrosion resistance mechanism of Cr-Mo low alloy steel was studied.Results demonstrated that Sn improves the corrosion resistance of the steel matrix mainly by... In this work,the beneficial effect of Sn addition on the corrosion resistance mechanism of Cr-Mo low alloy steel was studied.Results demonstrated that Sn improves the corrosion resistance of the steel matrix mainly by influencing the microstructural transformation.Sn addition and the synergistic effect of Sn,Cr,and Mo promote the formation of α-FeOOH,SnO_(2),SnO,Cr(OH)_(3),and molybdates,lead to the improved protection and stability of the rust layer.This synergistic effect also endows the inner rust layer with cation selectivity,preventing the further penetration of Cl-and inhibiting the localized corrosion of steel. 展开更多
关键词 Sn addition Low alloy steel skpfm TEM Corrosion resistance
原文传递
Corrosion mechanism of Mg alloys involving elongated long-period stacking ordered phase and intragranular lamellar structure 被引量:7
9
作者 Jinshu Xie Jinghuai Zhang +7 位作者 Zhi Zhang Zijian Yu Zhihao Xu Ru Wang Daqing Fang Xiaobo Zhang Xiaoru Zhang Ruizhi Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期190-203,共14页
It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subseque... It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subsequent film formation is important for understanding the corrosion mechanism of Mg alloys with multiple strengthening phases/structures.Here,we prepared the high-strength Mg-14.4Er-1.44Zn-0.3Zr(wt.%)alloys containing hybrid structures,i.e.,elongated long-period stacking ordered(LPSO)blocks+intragranular stacking faults(SFs)/LPSO lamellae.The Mg alloy with elongated LPSO blocks and intragranular LPSO lamellae(EZ-500 alloy)obtains good corrosion resistance(2.2 mm y^(–1)),while the Mg alloy containing elongated LPSO blocks and intragranular SFs(EZ-400 alloy)shows a significantly higher corrosion rate(6.9 mm y^(–1)).The results of scanning Kelvin probe force microscopy(SKPFM)show the elongated LPSO blocks act as cathode phase(87 mV in EZ-400 alloy),and the SFs serve as the weak anode(30 mV in EZ-400 alloy),resulting in high potential fluctuation in EZ-400 alloy.On the contrary,both elongated blocks and intragranular lamellae are cathodic LPSO phase(67–69 mV)in EZ-500 alloy,leading to a lower potential fluctuation.Quasi in-situ atomic force microscope(AFM)observation indicates that high potential fluctuation would cause strong micro-galvanic corrosion,and subsequently leads to the failure in rapid formation of corrosion film,finally forming a loose and porous film,while relatively low potential fluctuation could result in more uniform corrosion mode and facilitate the rapid formation of protective film.Therefore,we propose that it is an effective way to develop high-strength corrosionresistant Mg alloys by controlling the potential fluctuation to form a“uniform potential”strengthening microstructure。 展开更多
关键词 Mg alloys Stacking faults LPSO phase skpfm Quasi in-situ AFM Corrosion behavior Potential fluctuation
原文传递
Effect of Zn on mechanical and corrosion properties of Mg-Sc-Zn alloys 被引量:6
10
作者 Wenjun Ci Xianhua Chen +4 位作者 Yue Sun Xu Dai Guanzheng Zhu Di Zhao Fusheng Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期31-42,共12页
The effect of different Zn concentrations(0 wt.%,1 wt.%,3 wt.%,and 6 wt.%)on the microstructure,cor-rosion property,and mechanical property of Mg-0.3Sc-x Zn(x=0 wt.%,1 wt.%,3 wt.%,and 6 wt.%)alloys was investigated.He... The effect of different Zn concentrations(0 wt.%,1 wt.%,3 wt.%,and 6 wt.%)on the microstructure,cor-rosion property,and mechanical property of Mg-0.3Sc-x Zn(x=0 wt.%,1 wt.%,3 wt.%,and 6 wt.%)alloys was investigated.Here,MSZ1 alloy exhibits the highest corrosion resistance(0.194 mm/y)and appropriate mechanical properties with an ultimate tensile strength of 228 MPa and elongation of 19%.The superior corrosion resistance of Mg-0.3Sc-1Zn alloys is attributed to the homogeneous volta-potential distribution and the dense corrosion product film.With the increase in zinc content,the strength and plasticity of Mg-0.3Sc-x Zn alloys(x=0 wt.%,1 wt.%,3 wt.%,6 wt.%)improved to some extent.The precipitated ScZn phase plays the role of the second phase strengthening,which enables MSZ6 to obtain the maximum tensile strength.However,the ScZn phase with low volta potential intensifies the galvanic corrosion,re-sulting in the decline of the corrosion performance. 展开更多
关键词 High corrosion resistance Mechanical performance Mg-Sc-Zn alloys skpfm Corrosion product film
原文传递
Simultaneously improving mechanical and anti-corrosion properties of extruded Mg-Al dilute alloy via trace Er addition 被引量:6
11
作者 Zhi Zhang Jinshu Xie +5 位作者 Jinghuai Zhang Hao Dong Shujuan Liu Xiaobo Zhang Jun Wang Ruizhi Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第19期49-64,共16页
Simultaneously improving the mechanical properties and corrosion resistance of magnesium(Mg)alloys is a long-standing challenge to be solved in their engineering applications.In this work,we find that trace Er additio... Simultaneously improving the mechanical properties and corrosion resistance of magnesium(Mg)alloys is a long-standing challenge to be solved in their engineering applications.In this work,we find that trace Er addition can improve the mechanical and anti-corrosion properties of Mg-1.4Al-0.4Mn-0.4Ca-0.3Er(wt%,AMXE)dilute alloy synergistically,especially reducing the corrosion rate(0.75 mm y-1)by one order of magnitude compared with the reference Mg-1.4Al-0.4Mn-0.4Ca(AMX)alloy and making it comparable to that of high-purity Mg.Adding trace Er reduces the dynamic recrystallization degree and increases the strengthening phase particles,which is mainly responsible for the increase of yield strength by 42 MPa.The addition of Er promotes the formation of much less noble Al8Mn4Er with effective Fe trapping ability and induces dislocation segregation,thus dramatically reducing micro-galvanic corrosion tendency.Meanwhile,Er addition promotes the formation of a more passivation and dense corrosion film.These two factors together lead to the extremely low corrosion rate of AMXE alloy.Our findings are expected to promote the development of low alloyed high performance Mg alloys. 展开更多
关键词 Magnesium alloy Mechanics-corrosion synergy Rare earth element skpfm
原文传递
Developing new Mg alloy as potential bone repair material via constructing weak anode nano-lamellar structure 被引量:4
12
作者 Jinshu Xie Lele Wang +4 位作者 Jinghuai Zhang Liwei Lu Zhi Zhang Yuying He Ruizhi Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期154-175,共22页
The mechanics-corrosion and strength-ductility tradeoffs of magnesium(Mg)alloys have limited their applications in fields such as orthopedic implants.Herein,a fine-grain structure consisting of weak anodic nano-lamell... The mechanics-corrosion and strength-ductility tradeoffs of magnesium(Mg)alloys have limited their applications in fields such as orthopedic implants.Herein,a fine-grain structure consisting of weak anodic nano-lamellar solute-enriched stacking faults(SESFs)with the average thickness of 8 nm and spacing of 16 nm is constructed in an as-extruded Mg96.9Y1.2Ho1.2Zn0.6Zr0.1(at.%)alloy,obtaining a high yield strength(YS)of 370 MPa,an excellent elongation(EL)of 17%,and a low corrosion rate of 0.30 mm y−1(close to that of high-pure Mg)in a uniform corrosion mode.Through scanning Kelvin probe force microscopy(SKPFM),one-dimensional nanostructured SESFs are identified as the weak anode(∼24 mV)for the first time.The excellent corrosion resistance is mainly related to the weak anodic nature of SESFs and their nano-lamellar structure,leading to the more uniform potential distribution to weaken galvanic corrosion and the release of abundant Y^(3+)/Ho^(3+)from SESFs to form a more protective film with an outer Ca_(10)(PO_(4))_(6)(OH)_(2)/Y_(2)O_(3)/Ho_(2)O_(3) layer(thickness percentage of this layer:72.45%).For comparison,the as-cast alloy containing block 18R long period stacking ordered(LPSO)phase and the heat-treated alloy with fine lamellar 18R-LPSO phase(thickness:80 nm,spacing:120 nm)are also studied,and the characteristics of SESFs and 18R-LPSO phase,such as the weak anode nature of the former and the cathode nature of the latter(37-90 mV),are distinguished under the same alloy composition.Ultimately,we put forward the idea of designing Mg alloys with high mechanical and anti-corrosion properties by constructing"homogeneous potential strengthening microstructure",such as the weak anode nano-lamellar SESFs structure. 展开更多
关键词 Mg alloys Corrosion Solute-enriched stacking faults LPSO structure skpfm HYDROXYAPATITE
在线阅读 下载PDF
Achieving ultra-high corrosion-resistant Mg-Zn-Sc alloys by forming Sc-assisted protective corrosion product film 被引量:4
13
作者 Wenjun Ci Xianhua Chen +4 位作者 Xu Dai Chunquan Liu Yanlong Ma Di Zhao Fusheng Pan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期138-151,共14页
The weak corrosion resistance of magnesium and its alloys greatly limited the industrial application.Though functional self-healing coatings have been proposed as countermeasures,repeated damages on coatings under pra... The weak corrosion resistance of magnesium and its alloys greatly limited the industrial application.Though functional self-healing coatings have been proposed as countermeasures,repeated damages on coatings under practical installation and complex external environments could require self-adaptive cor-rosion protection against multiple abrasions.In this study,an ultra-high corrosion-resistant Mg-1Zn-1Sc(wt.%)alloy with a corrosion rate of 0.087 mm/y has been designed and prepared,which has fine grains and uniform structure of a nano-scale ScZn phase with low potential.A unique and dense corrosion prod-uct film with a three-layered structure was found and studied on Mg-1Zn-1Sc alloy,providing excellent corrosion protection.In addition,the formation and protection mechanisms of the three-layered corrosion product film on Mg-1Zn-1Sc alloy have been discussed and proposed.The growth behavior of protective corrosion product film could be driven by the synergy of Sc and Zn elements.Furthermore,with the in-crease of Sc content,the strength,plasticity,and corrosion resistance of Mg-1Zn-x Sc(x=0,0.2,0.6,1.0,in wt.%)alloys increased simultaneously.The high corrosion resistance and moderate mechanical perfor-mance qualify Mg-1Zn-1Sc alloy as a promising candidate for diverse industrial applications. 展开更多
关键词 High corrosion resistance Mechanical performance Mg-Zn-Sc alloy Corrosion product film Three-layer structure skpfm
原文传递
Significant influence of trace Li on the mechanical properties, corrosion behavior, and antibacterial properties of biodegradable Zn–4Cu alloys 被引量:2
14
作者 Shiyu Huang Heng Liu +2 位作者 Yanjing Su Lijie Qiao Yu Yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期245-257,共13页
In this work,trace Li was introduced to strengthen Zn–4Cu alloys.The results indicated that trace amounts of Li contributed to a significant increase in strength,resulting in an acceptable loss of elongation at fract... In this work,trace Li was introduced to strengthen Zn–4Cu alloys.The results indicated that trace amounts of Li contributed to a significant increase in strength,resulting in an acceptable loss of elongation at fracture.Additionally,Li in the form of LiZn_(4) led to more intensive galvanic corrosion,which accelerated the early corrosion rate.The release of a large amount of Zn^(2+),caused by the addition of Li,affected the phase composition of the main Zn-containing corrosion products.Moreover,the inhibition effect of the alloy on Staphylococcus aureus(S.aureus)was enhanced by the addition of 0.02 wt.%Li. 展开更多
关键词 MICROALLOYING Zn-Cu alloy LiZn_(4)/Zn pairs Biodegradable mechanism skpfm
原文传递
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying 被引量:1
15
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion Mechanical property V-microalloying LPSO skpfm
在线阅读 下载PDF
Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites 被引量:1
16
作者 Jinchao Jiao Jin Zhang +3 位作者 Yong Lian Shengli Han Kaihong Zheng Fusheng Pan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期484-498,共15页
Adding Ti particles to magnesium alloy simultaneously enhances its strength and ductility.However,how these particles influence on Mg alloy’s corrosion performance is seldom reported.The corrosion behavior of AZ31-Ti... Adding Ti particles to magnesium alloy simultaneously enhances its strength and ductility.However,how these particles influence on Mg alloy’s corrosion performance is seldom reported.The corrosion behavior of AZ31-Ti composites containing titanium nanoparticles(1.5 and 5 wt%)and micron particles(10 wt%)prepared by powder metallurgical in 3.5 wt%NaCl solution was investigated.The results indicate that Ti particles serve as the primary location for the cathodic hydrogen reduction reaction,resulting in intense galvanic corrosion between the Ti and Mg matrix.Ti nanoparticles distributed at the interface of the original AZ31 powder were in a discontinuous mesh structure,thus failing to act as a barrier against corrosion.The corrosion products with the existence of numerous cracks gradually peel off during the corrosion process and cannot protect the matrix.The average corrosion rate P_(w) of AZ31,AZ31-1.5%Ti,AZ31-5%Ti,and AZ31-10%Ti after 7 days of immersion is 27.55,105.65,283.67,and 99.35 mm/y,respectively.Therefore,AZ31-Ti composites can be considered as potential candidates for degradable fracturing tools.Otherwise,it is recommended to improve their corrosion resistance through surface treatment. 展开更多
关键词 AZ31-Ti composite NANO-TI MICRO-TI Corrosion behavior Scanning Kelvin probe force microscopy(skpfm)
原文传递
In-situ scanning Kelvin probe force microscopy on the diverse hydrogen trapping behaviours around incoherent NbC nanoprecipitates 被引量:1
17
作者 Binglu Zhang Zhaoxiang Ma +7 位作者 Yuan Ma Yongqing Chen Baolong Jiang Yu Jia Rongjian Shi Lin Chen Yang He Lijie Qiao 《Journal of Materials Science & Technology》 CSCD 2024年第27期216-224,共9页
One of the most intriguing methods of mitigating the hydrogen embrittlement of steels entails nano-precipitates that can trap H from enriching at vulnerable locations.However,controversial findings have been reported ... One of the most intriguing methods of mitigating the hydrogen embrittlement of steels entails nano-precipitates that can trap H from enriching at vulnerable locations.However,controversial findings have been reported on whether the incoherent NbC precipitates trap hydrogen.Here,by using in-situ scan-ning Kelvin probe force microscopy(SKPFM),we reveal the dynamic interaction of H with the border area of incoherent NbC nanoprecipitates in steel.Results indicate that the interaction between H flux and the interfaces varies amongst different precipitates,implying that H-trapping behaviours of incoherent NbC precipitates could be intrinsically diverse.Potential origins underlying the distinct behaviours are analyzed. 展开更多
关键词 Hydrogen embrittlement Scanning Kelvin probe force microscopy(skpfm) Carbide precipitates TEM High-strength low-alloy(HSLA)steels
原文传递
In-situ AFM and quasi-in-situ studies for localized corrosion in Mg-9Al-1Fe-(Gd) alloys under 3.5 wt.% NaCl environment
18
作者 Junping Shen Tao Lai +7 位作者 Zheng Yin Yang Chen Kun Wang Hong Yan Honggun Song Ruiliang Liu Chao Luo Zhi Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1170-1185,共16页
Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in li... Revealing the localized corrosion process of Mg alloy is considered as one of the most significant ways for improving its corrosion resistance.The reliable monitor should be high distinguishability and real-time in liquid environment.Herein,Mg-9Al-1Fe and Mg-9Al-1Fe-1Gd alloys were designed to highlight the impact of intermetallic on the corrosion behaviour.In-situ AFM with a special electrolyte circulation system and quasi-in-situ SEM observation were used to monitor the corrosion process of the designed alloys.SEM-EDS and TEM-SAED were applied to identify the intermetallic in the designed alloys,and their volta potentials were measured by SKPFM.According to the real-time and real-space in-situ AFM monitor,the corrosion process consisted of dissolution of anodicα-Mg phase,accumulation of corrosion products around cathodic phase and shedding of some fine cathodic phase.Then,the localized corrosion process of Mg alloy was revealed combined with the results of the monitor of corrosion process and Volta potential difference. 展开更多
关键词 Magnesium Localized corrosion In-situ AFM skpfm Corrosion behaviour.
在线阅读 下载PDF
Improving corrosion resistance of Zn-5Al(wt%)alloy by microalloying with samarium
19
作者 Xiaochao Zhou Wei Shi Song Xiang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1636-1644,I0006,共10页
The role of the rare earth element Sm in as-cast Zn-5AI alloy was studied in this work.A three times higher improvement than the control group on corrosion resistance was found with rare earth Sm adding(0.15 wt%).By u... The role of the rare earth element Sm in as-cast Zn-5AI alloy was studied in this work.A three times higher improvement than the control group on corrosion resistance was found with rare earth Sm adding(0.15 wt%).By using an electron prove micro analyzer(EPMA),focused ion beam(FIB)and scanning Kelvin probe force microscopy(SKPFM)techniques,two main mechanisms of the premium performance of the Sm adding were revealed.One was that the non-uniform nucleation and component undercooling induced by Sm adding,reduced theα-AI layer spacing thus improved the covering efficiency of the Al_(2)O_(3)film.The other was that the dissolved Sm in the Zn/Al eutectic structure modulated the electron work function thus induced the attenuation of Volta potential discrepancy.The experimental results show that when the addition of Sm is 0.15 wt%,the minimum Volta potential difference betweenα-AI andη-Zn phases is achieved,and excessive or deficient Sm addition will increase the Volta potential difference. 展开更多
关键词 Zn-5Al Sm Rare earth elements skpfm Volta potential
原文传递
钢中氢分布检测技术进展 被引量:11
20
作者 刘神光 周耀 +2 位作者 王正 王伟 李金许 《表面技术》 EI CAS CSCD 北大核心 2020年第8期1-14,共14页
主要介绍了几种目前应用比较广泛的氢分布检测技术的原理及其在氢渗透和氢脆研究中的应用,包括三维原子探针(Atom Probe Tomography,APT)、扫描开尔文探针力显微镜(Scanning Kelvin Probe Force Microscopy,SKPFM)、二次离子质谱法(Seco... 主要介绍了几种目前应用比较广泛的氢分布检测技术的原理及其在氢渗透和氢脆研究中的应用,包括三维原子探针(Atom Probe Tomography,APT)、扫描开尔文探针力显微镜(Scanning Kelvin Probe Force Microscopy,SKPFM)、二次离子质谱法(Secondary Ion Mass Spectroscopy,SIMS)和氢微印技术(Hydrogen microprinting technique,HMT),以及可用来检测氢浓度的热脱附质谱技术(Thermal desorption spectrometry,TDS)等。总结了几种检测技术的原理和特点,并简要介绍了它们在与H有关领域里的典型应用。其中,APT和SIMS是利用质谱法直接检测H,以获得H在材料中的分布;SKPFM是通过H引起的电位变化,来获得H的分布;HMT是通过置换反应,即H原子将Ag+置换为Ag原子,Ag原子沉积在试样表面的分布来表征H的分布;热脱附法则是通过恒定的升温速率下H脱附速率对不同陷阱的敏感性差异,来获得不同陷阱中的H浓度以及H与陷阱的相互作用。这几种检测技术的空间分辨率可达亚纳米、纳米、微米至数微米直至毫米级。另外,SKPFM还具有时间分辨的功能。这些技术在H检测方面的应用,使得研究者对H在材料中的微观分布与聚集状态有了直观地认识,进而对由氢引起的失效破坏(即氢致延迟断裂的微观机理)有了更深刻的理解。最后还介绍了目前比较常用的检测H浓度的方法。 展开更多
关键词 氢分布 原子探针技术 扫描开尔文力显微镜 二次离子质谱 氢微印技术 热脱附光谱
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部