期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于SKNet注意力机制的飞机类型识别算法 被引量:1
1
作者 舒振宇 秦昊 《中南民族大学学报(自然科学版)》 CAS 2024年第1期69-77,共9页
飞机类型识别是细粒度图像分类的一种,重点在于设计神经网络模型使其能够分辨各飞机种类中细微而具有区分性的特征.针对当前飞机识别任务中飞机种类众多、类间差异细微、类内差异显著等问题,提出了一种基于改进SKNet注意力与数据增广的... 飞机类型识别是细粒度图像分类的一种,重点在于设计神经网络模型使其能够分辨各飞机种类中细微而具有区分性的特征.针对当前飞机识别任务中飞机种类众多、类间差异细微、类内差异显著等问题,提出了一种基于改进SKNet注意力与数据增广的飞机类型识别算法.以ResNeXt101网络作为基础网络,改进CBAM注意力提出并行的通道-空间注意力PCSA并嵌入可选择卷积模块的不同分支,得到PCSA-SK注意力,将其嵌入基础网络以进一步融合基础网络提取的深层特征并为其分配权重.根据目标激活图中具有判别性信息的区域,在原图像上对判别性区域裁剪并加入训练集,实现数据增广.实验结果表明:该算法在FGVC-Aircraft数据集上取得了93.57%的识别准确率,优于其他飞机识别算法. 展开更多
关键词 飞机类型识别 sknet注意力 数据增广
在线阅读 下载PDF
结合SKNet与U-Net的盐体识别方法 被引量:3
2
作者 程国建 刘宁 +2 位作者 万晓龙 姚卫华 魏新善 《油气地质与采收率》 CAS CSCD 北大核心 2022年第1期62-68,共7页
地下盐体与油气藏的关系密不可分,盐体的准确识别对油气藏勘探和钻探路径规划具有重要意义。以往的深度学习方法使用固定大小的感受野,不能根据地震图像中盐体的大小动态地调整卷积核来捕捉特征,从而忽略了部分全局信息,导致在盐体边界... 地下盐体与油气藏的关系密不可分,盐体的准确识别对油气藏勘探和钻探路径规划具有重要意义。以往的深度学习方法使用固定大小的感受野,不能根据地震图像中盐体的大小动态地调整卷积核来捕捉特征,从而忽略了部分全局信息,导致在盐体边界或狭长处识别效果较差。针对上述问题,在U-Net基础上进行改进,使用SKNet作为编码器提取盐体特征,其具有动态选择机制,根据输入信息的多个尺度自适应地调整感受野的大小,并结合位置与通道自注意力机制以及超柱体方法进行特征融合。采用改进的U-Net方法对TGS盐体数据集进行评估,取得交并比为85.66%、像素准确率为96.1%的识别效果。 展开更多
关键词 盐体识别 深度学习 sknet U-Net 自注意力机制 特征融合
在线阅读 下载PDF
融合SKNet与YOLOv5深度学习的养殖鱼群检测 被引量:24
3
作者 赵梦 于红 +6 位作者 李海清 胥婧雯 程思奇 谷立帅 张鹏 韦思学 郑国伟 《大连海洋大学学报》 CAS CSCD 北大核心 2022年第2期312-319,共8页
为解决真实养殖环境下,水下成像模糊、失真等导致鱼群检测准确率低的问题,提出一种融合视觉注意力机制SKNet(selective kernel networks)与YOLOv5(you only look once)的养殖鱼群检测方法(SK-YOLOv5模型),该方法首先采用UNet(convolutio... 为解决真实养殖环境下,水下成像模糊、失真等导致鱼群检测准确率低的问题,提出一种融合视觉注意力机制SKNet(selective kernel networks)与YOLOv5(you only look once)的养殖鱼群检测方法(SK-YOLOv5模型),该方法首先采用UNet(convolutional networks for biomedical image segmentation)对图像进行预处理,得到清晰的鱼群图像,然后将SKNet融合到YOLOv5的Backbone端构成关注像素级信息的特征提取网络,加强对模糊鱼体的识别能力,并在水下模糊鱼群图像数据集上进行了消融试验和模型对比试验,以验证SK-YOLOv5的有效性。结果表明:在鱼群检测任务上,SK-YOLOv5的识别精确率和召回率分别达到了98.86%和96.64%,检测效果比YOLOv5分别提升了2.14%和2.29%,与目前检测准确率较高的水下目标检测模型XFishHmMp和FERNet相比,SK-YOLOv5取得了较好的检测效果,与XFishHmMp模型相比,识别精确率和召回率分别提升了5.39%和5.66%,与FERNet模型相比,识别精确率和召回率分别提升了3.59%和3.77%,实现了真实养殖环境下鱼群的准确检测。研究表明,融合SKNet与YOLOv5的养殖鱼群检测方法,有效地解决了水下模糊图像鱼群检测准确率低的问题,提升了养殖鱼群检测和识别的整体效果。 展开更多
关键词 鱼群检测 YOLOv5 UNet sknet 视觉注意力机制 深度学习
在线阅读 下载PDF
基于SKNet改进YOLOv5s的无人机对道路小目标的检测 被引量:1
4
作者 周秦汉 贾杰 +2 位作者 陈昊 张长箭 吕国云 《南昌航空大学学报(自然科学版)》 CAS 2023年第4期39-45,共7页
针对无人机航拍图像中出现的道路小目标检测精度较低的问题,提出以融合SKNet卷积核注意力机制与YOLOv5s的目标检测模型,提高检测模型对地面小目标特征信息提取识别能力。在此改进基础上,基于Visual Studio Code配置的Pytorch深度学习开... 针对无人机航拍图像中出现的道路小目标检测精度较低的问题,提出以融合SKNet卷积核注意力机制与YOLOv5s的目标检测模型,提高检测模型对地面小目标特征信息提取识别能力。在此改进基础上,基于Visual Studio Code配置的Pytorch深度学习开发环境,对SKNet+YOLOv5s的性能进行测试试验。结果表明:以VisDrone2019作为数据集训练时,相较于几种常规注意力机制的改进方法,如SENet+YOLOv5s、CBAM+YOLOv5s,SKNet+YOLOv5s的检测精度有所提升。 展开更多
关键词 sknet YOLOv5s 目标检测 注意力机制 深度学习 性能测试
在线阅读 下载PDF
基于改进的SKnet和Bi-GRU的岩石薄片图像矿物识别 被引量:3
5
作者 刘勇 吴晓红 +1 位作者 滕奇志 何海波 《智能计算机与应用》 2023年第1期104-111,共8页
通过分析岩石薄片中矿物成分,研究储集层空间结构,对后续的油气勘探开发具有重要意义。基于正交偏光序列图像的矿物识别研究已经取得了一些成果,但多数方法未利用矿物颗粒在序列图中的变化信息,本文借鉴视频分类的思想,针对岩石矿物颗... 通过分析岩石薄片中矿物成分,研究储集层空间结构,对后续的油气勘探开发具有重要意义。基于正交偏光序列图像的矿物识别研究已经取得了一些成果,但多数方法未利用矿物颗粒在序列图中的变化信息,本文借鉴视频分类的思想,针对岩石矿物颗粒正交偏光序列图像,结合岩石矿物颗粒消光性特点,构建了卷积神经网络和循环神经网络相结合的识别模型。卷积神经网络选用SKnet并在此基础上添加了空间特征融合机制,循环神经网络采用双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi-GRU)来提取序列图像的前后关联特征。选取石英、碱性长石、斜长石、岩屑4类矿物颗粒序列图像构建数据集进行验证,结果表明本文提出的矿物颗粒识别方法识别效果良好。 展开更多
关键词 矿物颗粒识别 偏光序列图像 消光性 sknet 双向门控循环单元
在线阅读 下载PDF
基于SKNet的增强型Pix2pixHD图像去雾方法 被引量:2
6
作者 段雅童 许光宇 《湖北理工学院学报》 2022年第4期23-28,共6页
针对采用去雾算法处理后图片仍存在色彩失真、残雾遗留等问题,提出一种基于SKNet的增强型Pix2pixHD去雾方法,即在增强型Pix2pixHD网络的增强模块中引入SKNet网络,实现了不同尺度特征的选择和融合,提高了算法对图像特征的利用率。此外,在... 针对采用去雾算法处理后图片仍存在色彩失真、残雾遗留等问题,提出一种基于SKNet的增强型Pix2pixHD去雾方法,即在增强型Pix2pixHD网络的增强模块中引入SKNet网络,实现了不同尺度特征的选择和融合,提高了算法对图像特征的利用率。此外,在SKNet网络前添加可变形卷积,使得卷积核产生自由形变,以适应不规则的目标物体,增强了模型的可变换能力,达到了很好的去雾效果。较现有的去雾方法,文章提出的网络更好地利用了图像各个尺度的特征细节,提高了图像去雾的效果。 展开更多
关键词 图像去雾 Pix2pixHD Selective Kernel Network(sknet) 可变形卷积
在线阅读 下载PDF
基于图像增强和SKNet的交通标志识别 被引量:4
7
作者 廖聪 郭凰 +2 位作者 赵茂军 王雨松 白俊峰 《计算机与现代化》 2023年第3期23-28,共6页
针对现有交通标志识别系统对图像特征提取不充分和复杂情况下难以识别的问题,设计基于图像增强和SKNet的交通标志识别模型HE-SKNet。首先,采用直方图均衡化,对过亮或过暗的交通标志图像进行增强;然后使用自适应调节感受野大小的SKNet网... 针对现有交通标志识别系统对图像特征提取不充分和复杂情况下难以识别的问题,设计基于图像增强和SKNet的交通标志识别模型HE-SKNet。首先,采用直方图均衡化,对过亮或过暗的交通标志图像进行增强;然后使用自适应调节感受野大小的SKNet网络进行特征提取和分类。GTSRB数据集的实验结果表明,提出的HE-SKNet模型识别准确率达到了98.95%,相比ResNet、ResNeXt、SENet和SKNet准确率平均提高了2.77个百分点,验证了HE-SKNet模型自适应提取不同尺度特征的能力,更适用于过亮或过暗的复杂实际应用场景。 展开更多
关键词 图像增强 直方图均衡化 sknet 深度学习 交通标志识别
在线阅读 下载PDF
基于知识蒸馏的加密流量检测方法
8
作者 戴熙来 汤艳君 +1 位作者 邱雨蝶 王子昂 《信息安全研究》 北大核心 2025年第8期702-709,共8页
近年来,随着互联网流量的迅速增长,尤其是加密通信的普及,恶意流量检测面临巨大挑战,由于移动设备资源和性能有限,使得在移动端加密流量中识别恶意行为更加困难.因此提出了一种基于知识蒸馏的加密流量检测方法.首先,通过可视化技术将流... 近年来,随着互联网流量的迅速增长,尤其是加密通信的普及,恶意流量检测面临巨大挑战,由于移动设备资源和性能有限,使得在移动端加密流量中识别恶意行为更加困难.因此提出了一种基于知识蒸馏的加密流量检测方法.首先,通过可视化技术将流量转化为图像;其次,在ConvNeXt网络架构的基础上,通过引入SKNet注意力机制,替换激活函数GELU为SwiGLU,构建了SK_SwiGLU_ConvNeXt网络作为教师网络;最后,选用轻量级的MobileNetV2为学生网络,并使用教师网络指导学生网络训练.该检测方法在公开数据集ISCX VPN-NonVPN上的实验结果表明,即使在资源受限的移动设备环境中,学生网络也能在降低模型复杂度的同时提高教师模型的检测效果,证明了该方法在移动设备上具有高效的部署潜力. 展开更多
关键词 加密流量识别 知识蒸馏 ConvNeXt sknet MobileNetV2 深度学习
在线阅读 下载PDF
基于WATD-MTF与改进的残差网络齿轮箱故障诊断研究
9
作者 沈景涛 武哲 +2 位作者 张强 崔彦平 曹亚超 《振动与冲击》 北大核心 2025年第7期247-257,共11页
针对齿轮箱工作环境复杂多变含噪声大、不同工况下模型泛化性能弱而导致训练准确率低等问题,提出一种小波自适应阈值降噪(wavelet adaptive threshold denoise,WATD)结合马尔可夫转移场(Markov transition field,MTF)与改进的残差网络... 针对齿轮箱工作环境复杂多变含噪声大、不同工况下模型泛化性能弱而导致训练准确率低等问题,提出一种小波自适应阈值降噪(wavelet adaptive threshold denoise,WATD)结合马尔可夫转移场(Markov transition field,MTF)与改进的残差网络齿轮箱故障诊断方法。在ResNet18模型的基础上融合了SKNet注意力网络,构成了SK-ResNet18模型,来提高ResNet18模型对重要特征的提取能力。利用WATD算法对一维信号进行去噪,将去噪后的一维信号生成包含时序信息的MTF二维特征图,并输入到改进后的网络中进行特征提取,最终利用网络全连接层实现对故障种类的精确识别。利用东南大学齿轮故障数据集和QPZZ-II试验台采集的齿轮故障数据对该方法进行试验验证,结果表明:该方法能有效识别故障类型,相比其它智能算法,该方法在数据降噪后与不同工况下均表现出较高的优越性和可泛化性能。所提方法可为实际工业的齿轮箱故障诊断任务提供一定的参考价值。 展开更多
关键词 故障诊断 sknet注意力网络 小波自适应阈值降噪(WATD) 马尔可夫转移场(MTF) 残差网络
在线阅读 下载PDF
小样本条件下的典型海洋承灾体识别算法研究
10
作者 文莉莉 张炜 +1 位作者 邬满 赵绪成 《应用海洋学学报》 北大核心 2025年第2期346-354,共9页
海洋承灾体的单体识别和精细化管理,对海洋灾害的精准预警和评估具有重要意义。由于海洋承灾体获取大量样本数据困难且成本高,难以满足传统深度学习模型的训练要求,因此本研究针对房屋、码头吊机、养殖网箱、养殖蚝排、危化品储存罐5种... 海洋承灾体的单体识别和精细化管理,对海洋灾害的精准预警和评估具有重要意义。由于海洋承灾体获取大量样本数据困难且成本高,难以满足传统深度学习模型的训练要求,因此本研究针对房屋、码头吊机、养殖网箱、养殖蚝排、危化品储存罐5种典型海洋承灾体,提出一种小样本条件下基于注意力机制和孪生残差网络的海洋承灾体识别方法。为增强小样本条件下模型的关键特征提取能力和泛化能力,本研究从两个方面进行了改进:①引入注意力机制SKNet对残差网络进行改进,设计了具有多尺度自适应能力的SKNet-ResNet-101网络,提高了模型的关键特征提取能力;②利用孪生网络度量学习的原理,以SKNet-ResNet-101网络为主干网络,构建基于注意力机制的双路孪生残差网络,以减少网络训练对大量样本的依赖,同时增强网络在小样本条件下的泛化能力。经过与FSOD、Meta R-CNN等算法在海洋承灾体、VOC、COCO数据集上的对比测试,改进后的双路孪生残差网络在识别准确率上均有所提高,其中,在海洋承灾体数据集上提高了0.89%,在VOC数据集上平均提高了0.97%,在COCO数据集上平均提高了0.33%。该模型增强了小样本条件下网络针对复杂场景图像特征的提取能力,为构建精细化的海洋承灾体脆弱性评价和灾变预警模型提供了技术基础。 展开更多
关键词 小样本学习 sknet ResNet-101 孪生神经网络 海洋承灾体
在线阅读 下载PDF
基于改进的YOLOv8n啤酒瓶底缺陷及异物检测
11
作者 安睿元 刘炯 《内蒙古科技与经济》 2025年第7期148-152,共5页
文章提出了一种融合SKNet注意力机制以及RepGhost模块的YOLOv8n改进算法,以提高不同目标在不同亮度背景下的特征提取能力,并轻量化原算法的网络结构。相较于原YOLOv8n模型,本算法在准确率、召回率、平均精度上分别提高了2.2%、0.1%、3.... 文章提出了一种融合SKNet注意力机制以及RepGhost模块的YOLOv8n改进算法,以提高不同目标在不同亮度背景下的特征提取能力,并轻量化原算法的网络结构。相较于原YOLOv8n模型,本算法在准确率、召回率、平均精度上分别提高了2.2%、0.1%、3.0%;相较于其他目标检测算法(YOLOv5s、YOLOv7-tiny、Faster R-CNN),本算法的检测准确率更高、泛化能力更强。 展开更多
关键词 瓶底质量检测 sknet注意力机制 RepGhost模块 YOLOv8n
在线阅读 下载PDF
中英文场景文本图像的检测和识别算法
12
作者 王艳媛 茅正冲 《计算机与现代化》 2024年第12期84-90,99,共8页
场景文本图像的背景复杂,检测算法难以定位文本区域,导致识别难度较高。为了同时检测和识别中文和英文的场景文本图像内容,并提高其检测和识别的准确率,提出一种基于ABCNetv2网络改进的算法模型TD-ABCNetv2。针对文本的形状、排列和字... 场景文本图像的背景复杂,检测算法难以定位文本区域,导致识别难度较高。为了同时检测和识别中文和英文的场景文本图像内容,并提高其检测和识别的准确率,提出一种基于ABCNetv2网络改进的算法模型TD-ABCNetv2。针对文本的形状、排列和字体等特征存在差异性的问题,该模型以SKNet作为骨干网络,引入选择性核函数SK模块,帮助网络学习不同尺度的特征,适应不同尺度、形状和方向的文本。考虑到中英文场景文本的字符大小和间隔不同,在FPN结构中增加ECA注意力模块,更有效地整合通道信息,增强网络对不同特征的敏感性,使得特征融合更有针对性。同时引入CIoU损失函数,更准确地衡量边界框之间的重叠程度,适应文本形状的变化,增强模型的泛化能力。通过在多个公开数据集上进行实验,结果表明了本文模型的有效性。 展开更多
关键词 场景文本 中文文本检测 sknet 注意力机制 交并比
在线阅读 下载PDF
基于SK-ResNet和迁移学习的滚动轴承故障诊断 被引量:2
13
作者 潘雪娇 董绍江 +2 位作者 邹松 吕智明 宋锴 《组合机床与自动化加工技术》 北大核心 2024年第10期166-170,共5页
针对传统深度学习模型在变工况环境下泛化能力差、诊断精度低的问题,提出了一种基于SK-ResNet和迁移学习的滚动轴承故障诊断方法。首先,对采集到的时域信号进行快速傅里叶变换(FFT)获得频域信号,并进行加权融合得到新的时频域数据集;其... 针对传统深度学习模型在变工况环境下泛化能力差、诊断精度低的问题,提出了一种基于SK-ResNet和迁移学习的滚动轴承故障诊断方法。首先,对采集到的时域信号进行快速傅里叶变换(FFT)获得频域信号,并进行加权融合得到新的时频域数据集;其次,将选择性内核网络(SKNet)融入到残差网络(ResNet)中提高特征提取能力;然后,采用基于多核最大均值差异(MK-MMD)和相关对齐(CORAL)改进的差异对齐损失(DDM)缩小变工况下滚动轴承故障数据特征分布差异,并将其应用到模型的多个模块中进一步缩小特征之间的分布距离。实验结果表明,与传统滚动轴承故障诊断方法相比,本文方法具有更好的诊断精度和泛化能力。 展开更多
关键词 选择性内核网络 残差网络 迁移学习 差异对齐损失
在线阅读 下载PDF
基于SK-EfficientNet的番茄叶片病害识别模型 被引量:12
14
作者 帖军 隆娟娟 +2 位作者 郑禄 牛悦 宋衍霖 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第4期104-114,共11页
针对目前番茄叶片病害识别的深度学习模型网络参数量多、精确度低、移动端模型部署难的问题,提出一种基于SK-EfficientNet的番茄叶片病害识别方法。该方法采用轻量级模型EfficientNet作为基准模型,并利用选择性卷积核机制SKNet替换Effic... 针对目前番茄叶片病害识别的深度学习模型网络参数量多、精确度低、移动端模型部署难的问题,提出一种基于SK-EfficientNet的番茄叶片病害识别方法。该方法采用轻量级模型EfficientNet作为基准模型,并利用选择性卷积核机制SKNet替换EfficientNet核心模块MBConv中的SENet,使得卷积核根据输入特征的多尺度信息自适应选择感受野大小,提高图像特征提取能力同时更有效地利用参数。多组对比实验结果显示,改进后的模型在训练精度上得到进一步提高,且模型参数仅为3.83 MiB。在PlantVillage数据集上平均准确率达到99.64%,且验证SK-EfficientNet-B2的识别精度最高;在自然场景下平均准确率较原模型提高3.81个百分点。结果表明,改进后模型能有效提高自然场景下番茄叶片病害识别精度,可为移动端部署番茄叶片病害识别模型提供参考。 展开更多
关键词 番茄叶片 病害识别 EfficientNet网络 sknet MBConv
在线阅读 下载PDF
基于DeeplabV3+改进的煤岩显微组分组自动化测试模型 被引量:3
15
作者 胡晋玮 奚峥皓 +2 位作者 徐国忠 李忠峰 刘翔 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第10期27-36,共10页
煤岩显微组分组的识别对分析煤炭化学性质起到关键作用。人工识别方法费时费力,且专业性要求较高。现有的计算机辅助识别有效方法多以深度学习语义分割模型为手段,但因煤岩显微图像组成复杂,且存在过渡组分,因此无法准确识别煤岩显微组... 煤岩显微组分组的识别对分析煤炭化学性质起到关键作用。人工识别方法费时费力,且专业性要求较高。现有的计算机辅助识别有效方法多以深度学习语义分割模型为手段,但因煤岩显微图像组成复杂,且存在过渡组分,因此无法准确识别煤岩显微组分组。针对此问题,提出改进的DeeplabV3+语义分割模型,在改进模型中引入Swin Transformer骨干网络和SkNet网络。首先,针对煤岩显微图像各个组分组交错杂糅且存在过渡组分,特征提取困难,利用Swin Transformer骨干网络作为基础特征提取网络,提升模型对煤岩显微图像每种组分组的特征提取能力,并使得分割网络获得特征间信息交互的能力;其次,针对在模型中空洞空间卷积池化金字塔模块对特征利用率低的问题,将SkNet网络融入空洞空间卷积池化金字塔模块,强化空洞空间卷积池化金字塔模块对重要特征的提取能力,并抑制非必要特征对最终预测结果的干扰;最后,将改进的DeeplabV3+模型与现有先进算法通过实验进行性能比较,结果表明:改进的DeeplabV3+语义分割模型在煤岩显微图像测试集上的像素准确率为92.06%,与随机森林方法、U-Net语义分割模型和DeeplabV3+语义分割模型相比像素准确率分别提高了9.48%、6.90%和3.40%;改进的DeeplabV3+语义分割模型与人工点测方法测试结果相近。改进的DeeplabV3+语义分割模型较现有煤岩显微组分组自动识别模型性能更优,可作为一种强大的计算机辅助人工识别煤岩显微组分组的手段。 展开更多
关键词 煤岩显微图像 显微组分组 自动化测试 语义分割模型 Swin Transformer sknet
在线阅读 下载PDF
基于YOLOV3的改进目标检测识别算法 被引量:19
16
作者 王战涛 张策 王晓田 《上海航天(中英文)》 CSCD 2021年第6期60-70,共11页
经过近几十年不断的研究和发展,红外目标检测识别在侦察、导弹制导等领域取得了卓越的成就和广泛的应用,亦成为当今的热门话题。为进一步提高模型的检测识别性能,提出一种基于YOLOV3改进的目标检测识别算法。首先,通过分析红外目标的检... 经过近几十年不断的研究和发展,红外目标检测识别在侦察、导弹制导等领域取得了卓越的成就和广泛的应用,亦成为当今的热门话题。为进一步提高模型的检测识别性能,提出一种基于YOLOV3改进的目标检测识别算法。首先,通过分析红外目标的检测特性,改进了原始算法的特征提取网络,融合KL-LOSS,在原网络预测目标位置的基础上,进一步预测了位置的准确度标准差,并结合Soft-NMS算法用于改善网络的检测准确度;其次,针对红外目标相对三通道彩色图像的特征量少的问题,在检测层前融合了SKNET模块,使网络更加关注目标的有用特征;最后,给出改进网络训练的新的损失函数及前向传播算法流程。实验结果表明:改进的KS-YOLO网络在目标域(实拍空中红外目标数据集)上的平均AP性能值要优于原来的YOLOV3网络2.4个百分点,预测时间比YOLOV3实用性更好、更快。 展开更多
关键词 红外目标检测 YOLOV3 sknet网络 Soft-NMS算法 KS-YOLO
在线阅读 下载PDF
基于注意力机制和Faster R-CNN深度学习的海洋目标识别模型 被引量:11
17
作者 文莉莉 孙苗 邬满 《大连海洋大学学报》 CAS CSCD 北大核心 2021年第5期859-865,共7页
为进一步提升对复杂海洋目标的检测能力,引入自适应尺度的注意力机制,提出一种适应多尺度复杂海洋目标的改进Faster R-CNN模型,该模型通过将卷积网络与SKNet网络相结合,增强模型的特征提取能力与特征有效性,并针对船舶、蚝排、红树林、... 为进一步提升对复杂海洋目标的检测能力,引入自适应尺度的注意力机制,提出一种适应多尺度复杂海洋目标的改进Faster R-CNN模型,该模型通过将卷积网络与SKNet网络相结合,增强模型的特征提取能力与特征有效性,并针对船舶、蚝排、红树林、海岸线4类典型海洋目标,利用91卫图助手与无人机高清影像建立了12000张样本库,分别基于改进的Faster R-CNN模型与原模型进行对比测试试验。结果表明:改进的模型虽然略微增加了计算量,但其特征提取能力与目标检测能力明显强于原模型,整体识别准确率为87.1%;在4类典型海洋目标中,船舶的识别准确率最高,可达94.4%,而红树林由于其特征比较复杂,边界不明显,其整体识别准确率为75.1%。研究表明,引入SKNet网络的Faster R-CNN网络模型,不仅增强了模型对多尺度复杂目标的特征提取能力,更适用于对复杂海洋目标的检测与识别。 展开更多
关键词 注意力机制 SENet模型 sknet模型 区域候选网络 Faster R-CNN模型 目标检测 深度学习
在线阅读 下载PDF
基于注意力机制的SK-YOLOv5海洋目标检测分类算法 被引量:4
18
作者 李斌 文莉莉 +2 位作者 邬满 刘画宁 许贵林 《广西科学》 CAS 北大核心 2023年第1期132-138,共7页
基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5(YOLOv5)的... 基于遥感影像的海洋目标图像具有多尺度、形状变化大、颜色暗淡、目标边界不清、图像模糊等特点,需要在现有的目标检测算法上进行改进,以满足遥感影像海洋目标检测及分类需要。针对这些问题,在You Only Look Once version 5(YOLOv5)的网络架构中引入Selective Kernel Networks(SKNet)注意力模块,提出一种新的SK-YOLOv5网络,增强网络对多尺度复杂海洋目标的特征提取和自适应能力。经对比实验测试,在相同的海洋目标数据集上,改进后的网络比原网络整体检测及分类准确率提升了约9%。 展开更多
关键词 注意力机制 sknet YOLOv5 海洋目标检测 特征提取
在线阅读 下载PDF
基于行人检测与峰值密度聚类的行人多次徘徊检测算法 被引量:1
19
作者 查祖福水 白梅娟 +2 位作者 魏永勇 秦亚洲 侯帅 《电脑与信息技术》 2023年第4期24-27,45,共5页
为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特... 为了提升传统行人徘徊检测方法的准确性,提出了一种结合行人检测与峰值密度聚类的行人多次徘徊检测算法(Multiple Wander Detection Combining Pedestrian Detection and Peak Density ClusteringMWD_PD_DPC)。首先,在行人检测算法的特征提取网络与FPN层之间加入自适应卷积注意力机制(SKNet),提升模型在多尺度场景下行人检测精度。然后,提出了柔性非极大值抑制(DIOU-Soft-NMS)来缓解行人在密集场景下错误抑制的现象,提升行人检测算法在密集场景下的检测精度。最后,使用峰值密度聚类算法(DPC)对行人的轨迹进行分析,来判断是否发生徘徊行为。并通过AdaFace人脸识别算法对徘徊的行人进行人脸匹配,来判断行人是否在不同时间段多次发生徘徊行为。实验表明,该方法单次徘徊检测的准确率到达了94.6%。行人多次徘徊检测的准确率到达了78.7%。 展开更多
关键词 行人检测 sknet 非极大值抑制 峰值密度聚类 人脸识别
在线阅读 下载PDF
基于SK-YOLOV3的遥感图像目标检测方法 被引量:6
20
作者 郭智超 丛林虎 +2 位作者 刘爱东 邓建球 应新永 《兵器装备工程学报》 CSCD 北大核心 2021年第7期165-171,共7页
针对传统的特征融合方式参数量高、无法反映通道和卷积核重要性、检测效果差等劣势,提出了一种基于SK-YOLOV3的遥感图像目标检测方法,在YOLOV3的基础上引入了SKNet视觉注意力机制,并对锚框算法进行优化。为了增强实验对比,在自建的数据... 针对传统的特征融合方式参数量高、无法反映通道和卷积核重要性、检测效果差等劣势,提出了一种基于SK-YOLOV3的遥感图像目标检测方法,在YOLOV3的基础上引入了SKNet视觉注意力机制,并对锚框算法进行优化。为了增强实验对比,在自建的数据集中使用大量复杂环境下拍摄的遥感卫星图片。实验结果表明,该检测模型对于提升目标分辨率效果明显,在检验不同样本图像时平均精度可达到87.33%,检测速率可达27.7 FPS,相比于其他检测方法,该检测方法存在较大优势。 展开更多
关键词 遥感图像 目标检测 sknet网络 特征融合 SK-YOLOV3算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部