交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注...交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注意力机制,可以更好地关注融合处的空间位置信息。在特征融合部分使用多尺度加权融合网络和金字塔池化,利用加权计算和跳跃连接的方式,增强低层与高层之间的语义信息融合效果。最后,使用边框回归损失函数(Scalable Intersection over Union Loss,SIoU)提高目标定位的准确性。在CCTSDB2021和GTSDB数据集上的实验结果显示,该方法在2种数据集上的平均精度(mean Average Precision,mAP)分别达到84.9%和98.5%,与主流检测模型对比有显著提升,较原模型分别提升了5.39个百分点和1.67个百分点,提高了交通标志的检测精度。展开更多
带钢作为一种重要的原材料已经应用到各个行业,其质量的优劣直接关系到最终产品的性能与质量。为了更准确地检测带钢表面缺陷,控制带钢质量,提出了一种冷轧带钢表面缺陷的检测模型。该模型在YOLOv5框架下进行改进,主要有3个方面:通过引...带钢作为一种重要的原材料已经应用到各个行业,其质量的优劣直接关系到最终产品的性能与质量。为了更准确地检测带钢表面缺陷,控制带钢质量,提出了一种冷轧带钢表面缺陷的检测模型。该模型在YOLOv5框架下进行改进,主要有3个方面:通过引入注意力机制模块以增强特征抽取架构;通过采用SIOU(Sum of Intersection over Union)损失函数来优化模型训练过程;通过改进置信度预测的损失函数以增强模型在识别真实对象时的精准度。经过实验验证,所提出的改进模型可以有效地进行冷轧带钢表面缺陷的检测,且与同类算法YOLOv4和YOLOv5相比,检测的平均准确度都有所提升。展开更多
针对自动驾驶场景动态目标检测存在检测速度难以满足实时性要求、检测目标小或被遮挡造成的精度不足和误检、漏检率高等问题,提出一种基于改进YOLOv8模型的行人及车辆检测方法。首先,在Backbone骨干网络提取图像特征时使用对图像分辨率...针对自动驾驶场景动态目标检测存在检测速度难以满足实时性要求、检测目标小或被遮挡造成的精度不足和误检、漏检率高等问题,提出一种基于改进YOLOv8模型的行人及车辆检测方法。首先,在Backbone骨干网络提取图像特征时使用对图像分辨率低、小目标检测友好的空间到深度卷积(a Space-to-Depth layer followed by a non-strided Convolution,SPD-Conv)模块;其次,在Neck层融合特征时增加上下文转换自注意力(Contextual Transformer,CoT)模块提高模型特征表达能力;最后,引入SIoU,加快模型的收敛速度并提高准确率。所提方法在KITTI数据集上实验。结果显示:相较于原YOLOv8算法,所提算法的准确率、召回率、平均准确率分别提高0.7%、2.1%、2.1%,浮点运算数、帧率分别提高3.6 GFLOPS、24.64 frame/s,证明所提方法能够有效综合满足自动驾驶车辆行人及车辆检测任务中的实时性、精度提高以及降低漏检率和误检率需求。展开更多
文摘交通标志在检测过程中,因受天气和光照强度的影响,导致检测时出现错检、漏检等问题,针对此问题提出一种融合空间信息的交通标志检测算法。首先,在网络中使用坐标卷积,增强网络对坐标位置信息的敏锐性。其次,在主干特征提取中加入坐标注意力机制,可以更好地关注融合处的空间位置信息。在特征融合部分使用多尺度加权融合网络和金字塔池化,利用加权计算和跳跃连接的方式,增强低层与高层之间的语义信息融合效果。最后,使用边框回归损失函数(Scalable Intersection over Union Loss,SIoU)提高目标定位的准确性。在CCTSDB2021和GTSDB数据集上的实验结果显示,该方法在2种数据集上的平均精度(mean Average Precision,mAP)分别达到84.9%和98.5%,与主流检测模型对比有显著提升,较原模型分别提升了5.39个百分点和1.67个百分点,提高了交通标志的检测精度。
文摘带钢作为一种重要的原材料已经应用到各个行业,其质量的优劣直接关系到最终产品的性能与质量。为了更准确地检测带钢表面缺陷,控制带钢质量,提出了一种冷轧带钢表面缺陷的检测模型。该模型在YOLOv5框架下进行改进,主要有3个方面:通过引入注意力机制模块以增强特征抽取架构;通过采用SIOU(Sum of Intersection over Union)损失函数来优化模型训练过程;通过改进置信度预测的损失函数以增强模型在识别真实对象时的精准度。经过实验验证,所提出的改进模型可以有效地进行冷轧带钢表面缺陷的检测,且与同类算法YOLOv4和YOLOv5相比,检测的平均准确度都有所提升。
文摘针对自动驾驶场景动态目标检测存在检测速度难以满足实时性要求、检测目标小或被遮挡造成的精度不足和误检、漏检率高等问题,提出一种基于改进YOLOv8模型的行人及车辆检测方法。首先,在Backbone骨干网络提取图像特征时使用对图像分辨率低、小目标检测友好的空间到深度卷积(a Space-to-Depth layer followed by a non-strided Convolution,SPD-Conv)模块;其次,在Neck层融合特征时增加上下文转换自注意力(Contextual Transformer,CoT)模块提高模型特征表达能力;最后,引入SIoU,加快模型的收敛速度并提高准确率。所提方法在KITTI数据集上实验。结果显示:相较于原YOLOv8算法,所提算法的准确率、召回率、平均准确率分别提高0.7%、2.1%、2.1%,浮点运算数、帧率分别提高3.6 GFLOPS、24.64 frame/s,证明所提方法能够有效综合满足自动驾驶车辆行人及车辆检测任务中的实时性、精度提高以及降低漏检率和误检率需求。