Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ...Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.展开更多
Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection ...Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.展开更多
Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
This article aims to present new terms of single-valued neutrosophic notions in theˇSostak sense,known as singlevalued neutrosophic regularity spaces.Concepts such as r-single-valued neutrosophic semi£-open,r-single...This article aims to present new terms of single-valued neutrosophic notions in theˇSostak sense,known as singlevalued neutrosophic regularity spaces.Concepts such as r-single-valued neutrosophic semi£-open,r-single-valued neutrosophic pre-£-open,r-single valued neutrosophic regular-£-open and r-single valued neutrosophicα£-open are defined and their properties are studied as well as the relationship between them.Moreover,we introduce the concept of r-single valued neutrosophicθ£-cluster point and r-single-valued neutrosophicγ£-cluster point,r-θ£-closed,andθ£-closure operators and study some of their properties.Also,we present and investigate the notions of r-single-valued neutrosophicθ£-connectedness and r-single valued neutrosophicδ£-connectedness and investigate relationship with single-valued neutrosophic almost£-regular.We compare all these forms of connectedness and investigate their properties in single-valued neutrosophic semiregular and single-valued neutrosophic almost regular in neutrosophic ideal topological spaces inˇSostak sense.The usefulness of these concepts are incorporated to multiple attribute groups of comparison within the connectedness and separateness ofθ£andδ£.展开更多
For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable sur...For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable surface and interfacial properties.Various single crystal types,including metals,semiconductors,ceramics,organics,and nanocrystals,exhibit superior catalytic selectivity and stability in reactions such as water splitting and carbon/nitrogen cycles,benefiting from high electrical conductivity,tunable energy bands,and active sites with high surface energy.Through surface modification,interfacial atomic doping,and heterostructure construction,the distribution of active sites,electronic structure,and mass transport can be precisely regulated,significantly optimizing the catalytic kinetics of single crystal materials.In situ characterizations elucidate catalytic mechanisms at the atomic scale,while emerging methods like AI-assisted synthesis and bio-template directed growth offer pathways to overcome bottlenecks in the precision and cost of single crystal preparation.In addressing stability challenges in complex environments,strategies such as organic-inorganic hybridization and gradient interface design effectively mitigate interfacial instability.Future research should focus on cross-scale structural regulation and multidisciplinary integration to facilitate the transition of single crystal electrocatalysts from fundamental research to industrial applications,enabling efficient energy conversion.展开更多
Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and mol...Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders.The advent of single-cell RNA sequencing(scRNA-seq)technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity.Nevertheless,investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges.In this comprehensive review,we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines.By utilizing these methodologies,crucial insights into the developmental dynamics,maintenance of homeostasis,and pathological processes involved in spine,joint,bone,muscle,and tendon disorders have been uncovered.Specifically focusing on the joint diseases of degenerative disc disease,osteoarthritis,and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension.These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.展开更多
Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-...Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-atom catalysts(SACs)maximize metal utilization and exhibit distinct catalytic behaviors due to their atomically dispersed nature.Over the past decade,SACs have demonstrated exceptional performance in various electrochemical and thermocatalytic reactions[1–3].However,despite these promising developments,several fundamental challenges hinder their practical implementation and large-scale commercialization.SACs face three major challenges:catalytic activity,stability,and scalable synthesis.Their isolated nature limits multi-electron transfer processes,making reaction kinetics highly sensitive to the coordination environment.To enhance catalytic activity,strategies such as secondary coordination effect,doping,and/or dual-atom configuration can be employed.Stability is another key issue,as single atoms tend to aggregate or undergo oxidation under reaction conditions,leading to performance decay.Strategies like strong metal-support interaction and ligand stabilization can be adopted to improve the durability of SACs.展开更多
Bone marrow lesions(BML)are early signs of osteoarthritis(OA)and are strongly correlated with the deterioration of cartilage lesions.Single-cell RNA sequencing(scRNA-seq)analyses were performed on BM from non-BML and ...Bone marrow lesions(BML)are early signs of osteoarthritis(OA)and are strongly correlated with the deterioration of cartilage lesions.Single-cell RNA sequencing(scRNA-seq)analyses were performed on BM from non-BML and BML areas and articular cartilage from intact and damaged areas to explore BML landscape and BML-cartilage crosstalk.We revealed the immune landscape of BM in non-BML and BML,and the transition to pro-inflammatory states of clusters in BMLs,such as classical monocytes and nonclassical monocytes.Non-classical monocytes have high inflammation,OA gene signatures,and senescence scores,and are potential primary clusters promoting OA progression.Histological signs of OA related to the cellular landscape in damaged cartilage were identified,including PreFC exhaustion.The BM-cartilage crosstalk at the cell-cell interaction(CCIs)level and the TNF signal transmitted by non-classical monocytes are the critical CCIs in BML-induced cartilage damage,and PreFC is one of the primary receivers of the signal.We further validated the higher senescence level of non-classical monocyte and FC-2 in OA mice,compared with classical monocyte and PreFC,respectively.Transcription factor 7 like 2(TCF7L2)was identified as a shared transcription factor in the senescence of monocytes and chondrocytes,facilitating the development of the senescence-associated secretory phenotype(SASP).Therefore,senescent non-classical monocytes promote BMLs and inflammation and senescence of chondrocytes by modulating BML–cartilage crosstalk in OA,with TCF7L2 serving as a regulator.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept...In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.展开更多
Exploration of stable metal single-site supported porous graphitic carbon nitride(PCN)nanostructures and the development of maximum atom utilization for enhanced photocatalytic oxidation of antibiotics remains a chall...Exploration of stable metal single-site supported porous graphitic carbon nitride(PCN)nanostructures and the development of maximum atom utilization for enhanced photocatalytic oxidation of antibiotics remains a challenge in current research.This work proposed a one-step thermal copolymerization to obtain Cu(Ⅰ)doping porous carbon nitride(CUCN)through a spontaneously reducing atmosphere by urea in a covered crucible.The obtained CUCN had crumpled ultrathin nanosheets and mesoporous structures,which possessed higher specific surface areas than PCN.From X-ray absorption near edge structure(XANES)and Fourier transform extended X-ray absorption fine structure(FT-EXAFS)spectra analysis,the Cu doping existed in the oxidation state of Cu(Ⅰ)as single atoms anchored on the 2D layers of CN through two N neighbors,thereby facilitating efficient pathways for the transfer of photoexcited charge carriers.Furthermore,the photoluminescence(PL)spectra,electrochemical impedance spectra(EIS)and transient photocurrent response test proved the improved separation and transfer of photoexcited charge carriers for Cu(Ⅰ)introduction.Consequently,the photocatalytic activity of CUCN was much better than that of PCN for antibiotics norfloxacin(NOR),with 4.7-fold higher degradation reaction rate constants.From species-trapping experiments and density function theory(DFT)calculations,the Cu single atoms in Cu-N_(2)served as catalytic sites that could accelerate charge transfer and facilitate the adsorption of molecular oxygen to produce active species.The stable Cu(Ⅰ)embedded in the layer structure led to the excellent recycling test and remained stable after four runs of degradation and even thermal regenerated treatment.The degradation paths of NOR by CUCN under visible light were also demonstrated.Our work sheds light on a sustainable and practical approach for achieving stable metal single-atom doping and enhancing photocatalytic degradation of aqueous pollutants.展开更多
In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of v...In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microsco...Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microscope and transmission electron microscope.Results show that the microstructure evolutions are similar under the creep conditions of 980℃/250 MPa and 1100℃/137 MPa.Cubicalγ′phase,which is dispersedly distributed in theγmatrix,gradually evolves into a layered structure perpendicular to the stress direction.The width of theγmatrix channel along the direction parallel to the stress increases.The relationship between the increase in width of theγmatrix channel and the strain satisfies linear relationship in logarithmic form,indicating that the width of theγmatrix can be deduced via the strain under creep state.This may provide an approach to investigate the width ofγmatrix in single crystal superalloys during creep under high temperature and low stress conditions.In the early creep stage,dislocations formed in theγphase generate mutually perpendicular networks through cross-slip at theγ/γ′interface.Then,stable hexagonal dislocation networks form as a result of the coupling effects of external stress and mismatch stress at high temperatures.In the later period of creep,dislocations shear theγ′phase,ultimately causing the fracture.展开更多
The deformation and fracture of a third-generation single crystal superalloy during in-situ tension at room temperature were investigated at multiple scales by scanning electron microscope,electron back-scattered diff...The deformation and fracture of a third-generation single crystal superalloy during in-situ tension at room temperature were investigated at multiple scales by scanning electron microscope,electron back-scattered diffractometer,and transmission electron microscope to reveal the deformation and fracture mechanism during tension.The proportion of low angle boundaries(LABs)with angles from 2.5°to 5.5°increases during tension.The change in LABs is particularly pronounced after elongation over 7%.The initiation of microcracks is caused by{111}<110>slip systems.After initiation,the crack size along the stress direction increases whereas the size extension along slip systems is suppressed.The fracture mode of the alloy is quasi-cleavage fracture and the slip lines near the fracture are implicit at room temperature.展开更多
The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superallo...The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.展开更多
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more...The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.展开更多
The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdraw...The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdrawal rate is a critical parameter affecting the spatial distribution ofγ/γ′eutectic along gravity direction.The results show that theγ/γ′eutectic fraction of the upper platform surface is always higher than that of the lower one,regardless of withdrawal rate.As the withdrawal rate decreases,there is a significant increase inγ/γ′eutectic fraction on the upper surface,while it decreases on the lower surface.The upward accumulation ofγ/γ′eutectic becomes more severe as the withdrawal rate decreases.It is also found that the percentage of Al+Ta is positively correlated with theγ/γ′eutectic fraction.Thermo-solute convection of Al and Ta solutes in the solidification front is the prime reason for the non-uniform distribution of eutectic.The non-uniform distribution ofγ/γ′eutectic cannot be eliminated even after subsequent solution heat treatment,resulting in excess eutectic on the upper surface and thus leading to the scrapping of the blade.展开更多
基金supported by the Jiangsu Province Traditional Chinese Medicine Technology Development Plan Project,Nos.MS2023113(to JC),MS2022090Young and Middle-aged Academic Leaders of Jiangsu Qing-Lan Project(to GL).
文摘Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies.
文摘Pediatric cancers are particularly significant due to their uncommon occurrence in children,driven by a variety of underlying factors.Because of their distinct molecular and genetic makeup,which makes early detection challenging,they are linked to problems.Diagnostic methods like imaging and tissue biopsy are only effective when the tumor has reached a size that can be identified.The liquid biopsy technique,the least intrusive and most convenient diagnostic method,is the subject of this review.It focuses on the significance of single cell analysis in examining uncommon cancer types.The many biomarkers found in bodily fluids and the cancer types they are linked to in children have been assessed,as has the potential route towards early detection and cancer recurrence forecasting.Combining the single cell liquid biopsy with the newest technologies,such as computational and multi-omics approaches,which have improved the efficiency of processing massive and unique genetic data,appears promising.This article discusses on a number of case reports for uncommon pediatric malignancies,such as Neuroblastoma,Medulloblastoma,Wilms Tumor,Rhabdomyosarcoma,Ewing Sarcoma,and Retinoblastoma,as well as their liquid biopsy profiles.Furthermore,the findings raise ethical questions regarding the therapeutic application of the technology as well as possible difficulties related to clinical translation.The likelihood that this single cell liquid biopsy will be clinically validated and eventually used as a routine diagnostic tool for uncommon pediatric cancers will rise with the realistic approach to sensitivity monitoring,specificity upgrading,and optimization.
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
文摘This article aims to present new terms of single-valued neutrosophic notions in theˇSostak sense,known as singlevalued neutrosophic regularity spaces.Concepts such as r-single-valued neutrosophic semi£-open,r-single-valued neutrosophic pre-£-open,r-single valued neutrosophic regular-£-open and r-single valued neutrosophicα£-open are defined and their properties are studied as well as the relationship between them.Moreover,we introduce the concept of r-single valued neutrosophicθ£-cluster point and r-single-valued neutrosophicγ£-cluster point,r-θ£-closed,andθ£-closure operators and study some of their properties.Also,we present and investigate the notions of r-single-valued neutrosophicθ£-connectedness and r-single valued neutrosophicδ£-connectedness and investigate relationship with single-valued neutrosophic almost£-regular.We compare all these forms of connectedness and investigate their properties in single-valued neutrosophic semiregular and single-valued neutrosophic almost regular in neutrosophic ideal topological spaces inˇSostak sense.The usefulness of these concepts are incorporated to multiple attribute groups of comparison within the connectedness and separateness ofθ£andδ£.
基金supported by National Natural Science Foundation of China(No.52202366)Taishan Scholar Project of Shandong Province(tstp20240515,tsqn202312217)+1 种基金Natural Science Foundation of Shandong Province(China,No.2025HWYQ-050,ZR2021QE011,ZR2022QH072,ZR2021QE284)the King Abdullah University of Science and Technology,the Center of Excellence for Renewable Energy and Storage Technologies.
文摘For emerging renewable and sustainable energy technologies,single crystal materials have become key materials to enhance electrocatalytic performance because of their atomic-level ordered structures and tailorable surface and interfacial properties.Various single crystal types,including metals,semiconductors,ceramics,organics,and nanocrystals,exhibit superior catalytic selectivity and stability in reactions such as water splitting and carbon/nitrogen cycles,benefiting from high electrical conductivity,tunable energy bands,and active sites with high surface energy.Through surface modification,interfacial atomic doping,and heterostructure construction,the distribution of active sites,electronic structure,and mass transport can be precisely regulated,significantly optimizing the catalytic kinetics of single crystal materials.In situ characterizations elucidate catalytic mechanisms at the atomic scale,while emerging methods like AI-assisted synthesis and bio-template directed growth offer pathways to overcome bottlenecks in the precision and cost of single crystal preparation.In addressing stability challenges in complex environments,strategies such as organic-inorganic hybridization and gradient interface design effectively mitigate interfacial instability.Future research should focus on cross-scale structural regulation and multidisciplinary integration to facilitate the transition of single crystal electrocatalysts from fundamental research to industrial applications,enabling efficient energy conversion.
基金National Key Research and Development Program of China(2022YFA1103202)National Natural Science Foundation of China(82272507,32270887,and 32200654)+6 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-ZDJO008)Postdoctoral Innovative Talent Support Program(BX20220397)Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning(SFLKF202201)Project for Enhancing Innovation of Army Medical University(2023X1839)Talent Innovation Training Program at the Army Medical Center(ZXZYTSYS09)General Hospital of Western Theater Command Research Project(2021-XZYG-B10)University Grants Committee,Research Grants Council of Hong Kong,China(14113723,N_CUHK472/22,C7030-18G,T13-402/17-N,and AoE/M-402/20)。
文摘Orthopedic conditions have emerged as global health concerns,impacting approximately 1.7 billion individuals worldwide.However,the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders.The advent of single-cell RNA sequencing(scRNA-seq)technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity.Nevertheless,investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges.In this comprehensive review,we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines.By utilizing these methodologies,crucial insights into the developmental dynamics,maintenance of homeostasis,and pathological processes involved in spine,joint,bone,muscle,and tendon disorders have been uncovered.Specifically focusing on the joint diseases of degenerative disc disease,osteoarthritis,and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension.These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
文摘Single-atom catalysis has revolutionized heterogeneous catalysis,which offers unparalleled atomic efficiency,well-defined active sites,and unique electronic properties.Unlike traditional nanoparticle catalysts,single-atom catalysts(SACs)maximize metal utilization and exhibit distinct catalytic behaviors due to their atomically dispersed nature.Over the past decade,SACs have demonstrated exceptional performance in various electrochemical and thermocatalytic reactions[1–3].However,despite these promising developments,several fundamental challenges hinder their practical implementation and large-scale commercialization.SACs face three major challenges:catalytic activity,stability,and scalable synthesis.Their isolated nature limits multi-electron transfer processes,making reaction kinetics highly sensitive to the coordination environment.To enhance catalytic activity,strategies such as secondary coordination effect,doping,and/or dual-atom configuration can be employed.Stability is another key issue,as single atoms tend to aggregate or undergo oxidation under reaction conditions,leading to performance decay.Strategies like strong metal-support interaction and ligand stabilization can be adopted to improve the durability of SACs.
基金supported by the Nature Science Foundation of Zhejiang Province(grant no.LD22C060002)National Science Foundation of China(grant no.82274547,82474240)+2 种基金Zhejiang Provincial Medical and Health Science and Technology Fund(grant no.2024KY1223)Research Project of Zhejiang Chinese Medical University(grant no.2023JKZKTS34)Project of Chunyan Special Fund for Chinese Medicine Development of Zhejiang Chinese Medical University(grant no.CY202305)。
文摘Bone marrow lesions(BML)are early signs of osteoarthritis(OA)and are strongly correlated with the deterioration of cartilage lesions.Single-cell RNA sequencing(scRNA-seq)analyses were performed on BM from non-BML and BML areas and articular cartilage from intact and damaged areas to explore BML landscape and BML-cartilage crosstalk.We revealed the immune landscape of BM in non-BML and BML,and the transition to pro-inflammatory states of clusters in BMLs,such as classical monocytes and nonclassical monocytes.Non-classical monocytes have high inflammation,OA gene signatures,and senescence scores,and are potential primary clusters promoting OA progression.Histological signs of OA related to the cellular landscape in damaged cartilage were identified,including PreFC exhaustion.The BM-cartilage crosstalk at the cell-cell interaction(CCIs)level and the TNF signal transmitted by non-classical monocytes are the critical CCIs in BML-induced cartilage damage,and PreFC is one of the primary receivers of the signal.We further validated the higher senescence level of non-classical monocyte and FC-2 in OA mice,compared with classical monocyte and PreFC,respectively.Transcription factor 7 like 2(TCF7L2)was identified as a shared transcription factor in the senescence of monocytes and chondrocytes,facilitating the development of the senescence-associated secretory phenotype(SASP).Therefore,senescent non-classical monocytes promote BMLs and inflammation and senescence of chondrocytes by modulating BML–cartilage crosstalk in OA,with TCF7L2 serving as a regulator.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022YQ42,ZR2021JQ15,ZR2021QE011,ZR2021ZD20,2022GJJLJRC-01)Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52202366).
文摘In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.
基金supported by the National Natural Science Foundation of China(Nos.52070103 and 22102102)Zhejiang Provincial Natural Science Foundation of China(Nos.LY21E090004 and LQ22B050004)+1 种基金Ningbo Public Welfare Science and Technology Program(No.2021S025)Ningbo Youth Leading Talent Project(No.2024QL038).
文摘Exploration of stable metal single-site supported porous graphitic carbon nitride(PCN)nanostructures and the development of maximum atom utilization for enhanced photocatalytic oxidation of antibiotics remains a challenge in current research.This work proposed a one-step thermal copolymerization to obtain Cu(Ⅰ)doping porous carbon nitride(CUCN)through a spontaneously reducing atmosphere by urea in a covered crucible.The obtained CUCN had crumpled ultrathin nanosheets and mesoporous structures,which possessed higher specific surface areas than PCN.From X-ray absorption near edge structure(XANES)and Fourier transform extended X-ray absorption fine structure(FT-EXAFS)spectra analysis,the Cu doping existed in the oxidation state of Cu(Ⅰ)as single atoms anchored on the 2D layers of CN through two N neighbors,thereby facilitating efficient pathways for the transfer of photoexcited charge carriers.Furthermore,the photoluminescence(PL)spectra,electrochemical impedance spectra(EIS)and transient photocurrent response test proved the improved separation and transfer of photoexcited charge carriers for Cu(Ⅰ)introduction.Consequently,the photocatalytic activity of CUCN was much better than that of PCN for antibiotics norfloxacin(NOR),with 4.7-fold higher degradation reaction rate constants.From species-trapping experiments and density function theory(DFT)calculations,the Cu single atoms in Cu-N_(2)served as catalytic sites that could accelerate charge transfer and facilitate the adsorption of molecular oxygen to produce active species.The stable Cu(Ⅰ)embedded in the layer structure led to the excellent recycling test and remained stable after four runs of degradation and even thermal regenerated treatment.The degradation paths of NOR by CUCN under visible light were also demonstrated.Our work sheds light on a sustainable and practical approach for achieving stable metal single-atom doping and enhancing photocatalytic degradation of aqueous pollutants.
基金supported by the National Natural Science Foundation of China(Nos.52372403 and U2268211)the Natural Science Foundation of Sichuan Province(No.2022NSFSC0034),China+1 种基金the National Railway Group Science and Technology Program(No.2023J071)the Traction Power State Key Laboratory of the Independent Research and Development Projects(No.2022TPL-T02),China.
文摘In recent years,train-tail swaying of 160 km/h electric multiple units(EMUs)inside single-line tunnels has been heavily researched,because the issue needs to be solved urgently.In this paper,a co-simulation model of vortex-induced vibration(VIV)of the tail car body is established,and the aerodynamics of train-tail swaying is studied.The simulation results were confirmed through a field test of operating EMUs.Furthermore,the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model.The results demonstrate that the aerodynamic force frequency(i.e.,vortex-induced frequency)of the train tail increases linearly with train speed.When the train runs at 130 km/h,with a small amplitude of train-tail swaying(within 10 mm),the vortex-induced frequency is 1.7 Hz,which primarily depends on the nose shape of the train tail.After the tail car body nose is extended,the vortex-induced frequency is decreased.As the swaying amplitude of the train tail increases(exceeding 25 mm),the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip,and the vortex-induced frequency shifts from 1.7 Hz to the nearby car body hunting(i.e.,the primary hunting)frequency of 1.3 Hz,which leads to the frequency-locking phenomenon of VIV,and the resonance intensifies train-tail swaying.For the motor vehicle of the train tail,optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels.Optimization of the tail car body nose shape reduces the amplitude of the vortex-induced force,thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
文摘Interrupted and ruptured creep tests were conducted on single crystal superalloy DD9 at 980℃/250 MPa and 1100℃/137 MPa conditions.Microstructure evolution during creep was analyzed through scanning electron microscope and transmission electron microscope.Results show that the microstructure evolutions are similar under the creep conditions of 980℃/250 MPa and 1100℃/137 MPa.Cubicalγ′phase,which is dispersedly distributed in theγmatrix,gradually evolves into a layered structure perpendicular to the stress direction.The width of theγmatrix channel along the direction parallel to the stress increases.The relationship between the increase in width of theγmatrix channel and the strain satisfies linear relationship in logarithmic form,indicating that the width of theγmatrix can be deduced via the strain under creep state.This may provide an approach to investigate the width ofγmatrix in single crystal superalloys during creep under high temperature and low stress conditions.In the early creep stage,dislocations formed in theγphase generate mutually perpendicular networks through cross-slip at theγ/γ′interface.Then,stable hexagonal dislocation networks form as a result of the coupling effects of external stress and mismatch stress at high temperatures.In the later period of creep,dislocations shear theγ′phase,ultimately causing the fracture.
文摘The deformation and fracture of a third-generation single crystal superalloy during in-situ tension at room temperature were investigated at multiple scales by scanning electron microscope,electron back-scattered diffractometer,and transmission electron microscope to reveal the deformation and fracture mechanism during tension.The proportion of low angle boundaries(LABs)with angles from 2.5°to 5.5°increases during tension.The change in LABs is particularly pronounced after elongation over 7%.The initiation of microcracks is caused by{111}<110>slip systems.After initiation,the crack size along the stress direction increases whereas the size extension along slip systems is suppressed.The fracture mode of the alloy is quasi-cleavage fracture and the slip lines near the fracture are implicit at room temperature.
基金National Science and Technology Major Project(J2019-VI-0022-0138)。
文摘The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades.
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金National Natural Science Foundation of China(12102410)Fund of National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2022212005)。
文摘The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions.
基金Shenzhen Science and Technology Program(JSGG20220831092800001)。
文摘The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdrawal rate is a critical parameter affecting the spatial distribution ofγ/γ′eutectic along gravity direction.The results show that theγ/γ′eutectic fraction of the upper platform surface is always higher than that of the lower one,regardless of withdrawal rate.As the withdrawal rate decreases,there is a significant increase inγ/γ′eutectic fraction on the upper surface,while it decreases on the lower surface.The upward accumulation ofγ/γ′eutectic becomes more severe as the withdrawal rate decreases.It is also found that the percentage of Al+Ta is positively correlated with theγ/γ′eutectic fraction.Thermo-solute convection of Al and Ta solutes in the solidification front is the prime reason for the non-uniform distribution of eutectic.The non-uniform distribution ofγ/γ′eutectic cannot be eliminated even after subsequent solution heat treatment,resulting in excess eutectic on the upper surface and thus leading to the scrapping of the blade.