A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarizatio...A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarization saturation (PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displace- ment (COD), the crack opening potential (COP), and the local stress intensity factors (SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.展开更多
叶绿素作为植物光合作用的主体,在监测植被生长状态,评估固碳能力方面发挥着巨大的作用。遥感技术作为一种高效低成本的对地观测技术,能够通过叶片反射光谱特征实现叶绿素含量(chlorophyll content,Cab,含量为面密度)的估算。然而,叶片...叶绿素作为植物光合作用的主体,在监测植被生长状态,评估固碳能力方面发挥着巨大的作用。遥感技术作为一种高效低成本的对地观测技术,能够通过叶片反射光谱特征实现叶绿素含量(chlorophyll content,Cab,含量为面密度)的估算。然而,叶片光谱会受到叶片含水量、叶细胞结构等影响,从而降低遥感估算Cab的精度。而日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)遥感是直接探测叶绿素激发荧光信息,其变化特征与Cab直接相关,在Cab估算中有巨大的潜力。为此,以荧光辐射传输模型(soil canopy observation,photo-chemistry and energy fluxes,SCOPE)为工具,通过敏感性分析确定Cab荧光敏感波段,并建立基于荧光光谱的Cab估算模型,最后利用实测数据验证模型的鲁棒性。研究结果表明,700、730 nm分别为叶绿素高、低敏感波段(SIF_(700)、SIF_(730)),760 nm为叶绿素高相关性波段(SIF_(760)),以此3波段建立基于荧光比值的Cab估算模型,其中,以SIF_(760)与SIF_(700)的荧光比值建模精度最优,决定系数R2为0.9981,均方根误差(root mean square error,RMSE)为0.0435μg/cm^(2)。SIF_(700)与SIF_(730)荧光比值和Cab的建模精度最低,但R2和RMSE也分别达到了0.9048和0.0886μg/cm^(2)。利用实测数据独立样本对上述3种估算方法进行验证,SIF_(760)/SIF_(730)估算结果表现最佳,RMSE为0.2108μg/cm^(2),SIF_(700)/SIF_(730)次之,RMSE为0.3454μg/cm^(2),但呈现出整体高估现象;SIF_(760)/SIF_(700)估算结果与实测数据偏差较大,RMSE为0.7435μg/cm^(2)。综上,SIF_(760)/SIF_(730)构建的比值植被指数在估算Cab过程中不仅能够保证很好的建模精度,同时又表现出极佳的鲁棒性。研究结果为利用叶绿素荧光遥感手段进行叶片生化参数估算提供技术参考。展开更多
In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as...In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July. ~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1–2 weeks earlier in 2012 compared to the other years of 2010–2014;2) the drought had a more severe impact on agroecosystems(crop and grassland) than on forests;3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence(SIF) and gross primary production(GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest(1.76 Pg C/yr) during 2010–2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling.展开更多
文摘A modified polarization saturation model is proposed and addressed math- ematically using a complex variable approach in two-dimensional (2D) semipermeable piezoelectric media. In this model, an existing polarization saturation (PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displace- ment (COD), the crack opening potential (COP), and the local stress intensity factors (SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.
文摘叶绿素作为植物光合作用的主体,在监测植被生长状态,评估固碳能力方面发挥着巨大的作用。遥感技术作为一种高效低成本的对地观测技术,能够通过叶片反射光谱特征实现叶绿素含量(chlorophyll content,Cab,含量为面密度)的估算。然而,叶片光谱会受到叶片含水量、叶细胞结构等影响,从而降低遥感估算Cab的精度。而日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)遥感是直接探测叶绿素激发荧光信息,其变化特征与Cab直接相关,在Cab估算中有巨大的潜力。为此,以荧光辐射传输模型(soil canopy observation,photo-chemistry and energy fluxes,SCOPE)为工具,通过敏感性分析确定Cab荧光敏感波段,并建立基于荧光光谱的Cab估算模型,最后利用实测数据验证模型的鲁棒性。研究结果表明,700、730 nm分别为叶绿素高、低敏感波段(SIF_(700)、SIF_(730)),760 nm为叶绿素高相关性波段(SIF_(760)),以此3波段建立基于荧光比值的Cab估算模型,其中,以SIF_(760)与SIF_(700)的荧光比值建模精度最优,决定系数R2为0.9981,均方根误差(root mean square error,RMSE)为0.0435μg/cm^(2)。SIF_(700)与SIF_(730)荧光比值和Cab的建模精度最低,但R2和RMSE也分别达到了0.9048和0.0886μg/cm^(2)。利用实测数据独立样本对上述3种估算方法进行验证,SIF_(760)/SIF_(730)估算结果表现最佳,RMSE为0.2108μg/cm^(2),SIF_(700)/SIF_(730)次之,RMSE为0.3454μg/cm^(2),但呈现出整体高估现象;SIF_(760)/SIF_(700)估算结果与实测数据偏差较大,RMSE为0.7435μg/cm^(2)。综上,SIF_(760)/SIF_(730)构建的比值植被指数在估算Cab过程中不仅能够保证很好的建模精度,同时又表现出极佳的鲁棒性。研究结果为利用叶绿素荧光遥感手段进行叶片生化参数估算提供技术参考。
基金Under the auspices of the National Natural Science Foundation of China(No.41801340)Natural Science Foundation of Liaoning,China(No.20180550238)the Key Research Program of Frontier Sciences by Chinese Academy of Sciences(No.QYZDB-SSW-DQC005)
文摘In the summer of 2012, the US Midwest, the most productive agricultural region in the world, experienced the most intense and widespread drought on record for the past hundred years. The 2012 drought, characterized as ‘flash drought’, developed in May with a rapid intensification afterwards, and peaked in mid-July. ~76% of crop region and 60% of grassland and pasture regions have been under moderate to severe dry conditions. This study used multiple lines of evidences, i.e., in-situ AmeriFlux measurements, spatial satellite observations, and scaled ecosystem modeling, to provide independent and complementary analysis on the impact of 2012 flash drought on the US Midwest vegetation greenness and photosynthesis carbon uptake. Three datasets consistently showed that 1) phenological activities of all biomes advanced 1–2 weeks earlier in 2012 compared to the other years of 2010–2014;2) the drought had a more severe impact on agroecosystems(crop and grassland) than on forests;3) the growth of crop and grassland was suppressed from June with significant reduction of vegetation index, sun-induced fluorescence(SIF) and gross primary production(GPP), and did not recover until the end of growing season. The modeling results showed that regional total GPP in 2012 was the lowest(1.76 Pg C/yr) during 2010–2014, and decreased by 63 Tg C compared with the other-year mean. Agroecosystems, accounting for 84% of regional GPP assimilation, were the most impacted by 2012 drought with total GPP reduction of 9%, 7%, 6%, and 29% for maize, soybean, cropland, and grassland, respectively. The frequency and severity of droughts have been predicted to increase in future. The results imply the importance to investigate the influences of flash droughts on vegetation productivity and terrestrial carbon cycling.