期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Nucleocytoplasmic shuttling of Smad proteins 被引量:17
1
作者 Caroline S Hill 《Cell Research》 SCIE CAS CSCD 2009年第1期36-46,共11页
Nuclear accumulation of active Smad complexes is crucial for transduction of transforming growth factor β (TGF-β)- superfamily signals from transmembrane receptors into the nucleus. It is now clear that the nucleo... Nuclear accumulation of active Smad complexes is crucial for transduction of transforming growth factor β (TGF-β)- superfamily signals from transmembrane receptors into the nucleus. It is now clear that the nucleocytoplasmic distributions of Smads, in both the absence and the presence of a TGF-β-superfamily signal, are not static, but instead the Smads are continuously shuttling between the nucleus and the cytoplasm in both conditions. This article presents the evidence for continuous nucleocytoplasmic shuttling of Smads. It then reviews different mechanisms that have been proposed to mediate Smad nuclear import and export, and discusses how the Smad steady-state distributions in the absence and the presence of a TGF-β-superfamily signal are established. Finally, the biological relevance of continuous nucleocytoplasmic shuttling for signaling by TGF-β superfamily members is discussed. 展开更多
关键词 SMAD nuclear import and export TGF-β-superfamily signaling KARYOPHERIN nucleocytoplasmic shuttling
在线阅读 下载PDF
Stereoblock Polypropylenes Prepared by Efficient Chain Shuttling Polymerization of Propylene with Binary Zirconium Catalysts and iBu3Al 被引量:4
2
作者 Xiao Yin Huan Gao +4 位作者 Fei Yang Li Pan Bin Wang Zhe Ma Yue-Sheng Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第11期1192-1201,I0006,共11页
Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2... Stereoblock polypropyienes bearing isotactic,atactic,and syndictactic polypropylene segments were successfully prepared by dry methylaluminoxane activated binary catalysts system,Ph2CFluCpZrCl2 and {Me2Si(2,5-Me2-3-(2-MePh)-cyclopento[2,3-b]thiophen-6-yl)2}ZCl2,in the presence of iBu3Al as a chain shutting agent.by studying the catalyst activity,chain transfer efficiency,and reversility of chain transfer reaction of each catalyst system,as well as the molecular weight and polydispersity of the resulting polymers,the allyl exchange reactions between the zirconium catalyst and different main-group metal alky were estimated,respectvely.Based on the optimized react condition,the chain shuttling polymerization was conducted by binary catalyst system in the presence of iBu3Al under both atmospheric and high pressure.Resultant polymers were identified as stereoblock polypropylenes according to microstructure and physical properties analyses by 13C{1H}-NMR,DsC,and GPC. 展开更多
关键词 Stereoblock polypropylenes Chain shuttling polymerization Zirconium catalyst Chain transfer reaction
原文传递
Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na-O_(2) batteries 被引量:2
3
作者 Kai Yang Yiwei Li +8 位作者 Langlang Jia Yan Wang Zijian Wang YuChen jia Shichun Yang Magda Titirici Xinhua Liu Luyi Yang Feng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期438-443,共6页
Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery perf... Sodium-oxygen batteries(Na-O_(2))have attracted extensive attention as promising energy storage systems due to their high energy density and low cost.Redox mediators are often employed to improve Na-O_(2) battery performance,however,their effect on the formation mechanism of the oxygen reduction product(NaO_(2))is still unclear.Here,we have investigated the formation mechanism of NaO_(2) during the discharge process in the presence of a redox mediator with the help of atomic/nano-scale in-situ characterization tools used in concert(e.g.atomic force microscope,electrochemical quartz crystal microbalance(EQCM)and laser nano-particle analyzer).As a result,real-time observations on different time scales show that by shuttling electrons to the electrolyte,the redox mediator enables formation of NaO_(2) in the solution-phase instead of within a finite region near the electrode surface.These findings provide new fundamental insights on the understanding of Na-O_(2) batteries and new consequently perspectives on designing high performance metal-O_(2) batteries and other related functions. 展开更多
关键词 Na-O_(2)battery In-situ AFM EQCM Redox mediator shuttling effect
在线阅读 下载PDF
Optically probing molecular shuttling motion of[2]rotaxane by a conformation-adaptive fluorophore 被引量:1
4
作者 Chengyuan Yu Xiaodong Wang +5 位作者 Cai-Xin Zhao Shun Yang Jiaan Gan Zhuo Wang Zhanqi Cao Da-Hui Qu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第11期4904-4907,共4页
A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion... A bistable[2]rotaxane with a conformation-adaptive macrocycle bearing a 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine(DPAC)unit was synthesized,which could be utilized to optical probe the molecular shuttling motion of the functionalized rotaxane system.The UV-vis,^(1) H NMR and PL spectroscopic data clearly demonstrated that the DPAC ring was interlocked onto the thread and the fluorescence intensity of the DPAC unit in the macrocycle was effectively regulated by the location change of the macrocycle along the thread under acid/base stimulation,which was attributed to the modulation of the intramolecular photo-induced electron transfer between the DPAC unit and the methyltriazole(MTA)unit.This bistable rotaxane system containing a conformation-adaptive fluorophore unit in the macrocycle moiety opens an alternative way to design functional bistable mechanically interlocked molecules. 展开更多
关键词 Rotaxane Optically probe Mechanical shuttling Molecular conformations Conformation-adaptive macrocycle
原文传递
Targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation
5
作者 Sage Arbor 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期207-209,共3页
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation... Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin; 展开更多
关键词 AICD Targeting amyloid precursor protein shuttling and processing-long before amyloid beta formation APP ADAM
暂未订购
P68 RNA helicase is a nucleocytoplasmic shuttling protein 被引量:3
6
作者 Haizhen Wang Xueliang Gao +2 位作者 Yun Huang Jenny Yang Zhi-Ren Liu 《Cell Research》 SCIE CAS CSCD 2009年第12期1388-1400,共13页
P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. Consistent with the function of the protein in transcriptional regulation an... P68 RNA helicase is a prototypical DEAD box RNA helicase. The protein plays a very important role in early organ development and maturation. Consistent with the function of the protein in transcriptional regulation and pre-mRNA splicing, p68 was found to predominately localize in the cell nucleus. However, recent experiments demon- strate a transient cytoplasmic localization of the protein. We report here that p68 shuttles between the nucleus and the cytoplasm. The nucleocytoplasmic shuttling of p68 is mediated by two nuclear localization signal and two nuclear exporting signal sequence elements. Our experiments reveal that p68 shuttles via a classical RanGTPase-dependent pathway. 展开更多
关键词 P68 RNA helicase nucleocytoplasm shuttle NLS NES DEAD box
在线阅读 下载PDF
Liquid metal in prohibiting polysulfides shuttling in metal sulfides anode for sodium-ion batteries
7
作者 Xiaobo Zheng Xinwei Guan +8 位作者 Xuan Cheng Xiaoning Li Yang Fu Yitong Li Zhi Zheng Weikong Pang Xun Xu Peng Li Tianyi Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期559-567,共9页
Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,s... Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,shuttle across separator,and react with sodium anode,leading to severe capacity loss and safety concerns.Herein,for the first time,gallium(Ga)-based liquid metal(LM)alloy is incorporated with MoS_(2)nanosheets to work as an anode in SIBs.The electron-rich,ultrahigh electrical conductivity,and self-healing properties of LM endow the heterostructured MoS_(2)-LM with highly improved conductivity and electrode integrity.Moreover,LM is demonstrated to have excellent capability for the adsorption of polysulfides(e.g.,Na_(2)S,Na_(2)S_(6),and S_(8))and subsequent catalytic conversion of Na_(2)S.Consequently,the MoS_(2)-LM electrode exhibits superior ion diffusion kinetics and long cycling performance in SIBs and even in lithium/potassium-ion battery(LIB/PIB)systems,far better than those electrodes with conventional binders(polyvinylidene difluoride(PVDF)and sodium carboxymethyl cellulose(CMC)).This work provides a unique material design concept based on Ga-based liquid metal alloy for metal sulfide anodes in rechargeable battery systems and beyond. 展开更多
关键词 GalnSn liquid metal alloy MoS_(2) Polysulfides shuttle effects Catalytic conversion Sodium-ion batteries
在线阅读 下载PDF
Nucieocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity 被引量:6
8
作者 Yuzhen Mei Yaqin Wang +4 位作者 Tao Hu Xiuling Yang Rosa Lozano-Duran Garry Sunter Xueping Zhou 《Molecular Plant》 SCIE CAS CSCD 2018年第12期1466-1481,共16页
Many geminivirus C4 proteins induce severe developmental abnormalities in plants.We previously demon- strated that Tomato leaf curl Yunnan virus (TLCYnV)C4 induces plant developmental abnormalities at least partically... Many geminivirus C4 proteins induce severe developmental abnormalities in plants.We previously demon- strated that Tomato leaf curl Yunnan virus (TLCYnV)C4 induces plant developmental abnormalities at least partically by decreasing the accumulation of NbSKη,an ortholog of Arabidopsis BIN2 kinase involved in the brassinosteroid signaling pathway,in the nucleus through directing it to the plasma membrane.However, the molecular mechanism by which the membrane-associated C4 modifies the localization of NbSKη in the host cell remains unclear.Here,we show that TLCYnV C4 is a nucleocytoplasmic shuttle protein,and that C4 shuttling is accompanied by nuclear export of NbSKTI.TLCYnV C4 is phosphorylated by NbSKη in the nucleus,which promotes myristoylation of the viral protein.Myristoylation of phosphorylated C4 favors its interaction with exportin-α(XPO I);which in turn facilitates nuclear export of the C4/NbSKTI complex. Supporting this model,chemical inhibition of N-myristoyltransferases or exportin-α enhanced nuclear retention of C4,and mutations of the putative phosphorylation or myristoylation sites in C4 resulted in increased nuclear retention ofrC4 and thus decreased severity of C4-induced developmental abnormalities. The impact of C4 on development is also lessened when a nuclear localization signal or a nuclear export signal is added to its C-terminus,restricting it to a specific cellular niche and therefore impairing nucleocytoplasmic shuttling.Taken together,our results suggest that nucleocytoplasmic shuttling of TLCYnV C4,enabled by phosphorylation by NbSKη,myristoylation,and interaction with exportin-α is critical for its function as a pathogenicity factor. 展开更多
关键词 GEMINIVIRUS C4 PHOSPHORYLATION MYRISTOYLATION PATHOGENICITY nucleocytoplasmic shuttling
原文传递
SIRT1 activation synergizes with FXR agonism in hepatoprotection via governing nucleocytoplasmic shuttling and degradation of FXR 被引量:4
9
作者 Shuang Cui Huijian Hu +6 位作者 An Chen Ming Cui Xiaojie Pan Pengfei Zhang Guangji Wang Hong Wang Haiping Hao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第2期559-576,共18页
Farnesoid X receptor(FXR)is widely accepted as a promising target for various liver diseases;however,panels of ligands in drug development show limited clinical benefits,without a clear mechanism.Here,we reveal that a... Farnesoid X receptor(FXR)is widely accepted as a promising target for various liver diseases;however,panels of ligands in drug development show limited clinical benefits,without a clear mechanism.Here,we reveal that acetylation initiates and orchestrates FXR nucleocytoplasmic shuttling and then enhances degradation by the cytosolic E3 ligase CHIP under conditions of liver injury,which represents the major culprit that limits the clinical benefits of FXR agonists against liver diseases.Upon inflammatory and apoptotic stimulation,enhanced FXR acetylation at K217,closed to the nuclear location signal,blocks its recognition by importin KPNA3,thereby preventing its nuclear import.Concomitantly,reduced phosphorylation at T442 within the nuclear export signals promotes its recognition by exportin CRM1,and thereby facilitating FXR export to the cytosol.Acetylation governs nucleocytoplasmic shuttling of FXR,resulting in enhanced cytosolic retention of FXR that is amenable to degradation by CHIP.SIRT1 activators reduce FXR acetylation and prevent its cytosolic degradation.More importantly,SIRT1 activators synergize with FXR agonists in combating acute and chronic liver injuries.In conclusion,these findings innovate a promising strategy to develop therapeutics against liver diseases by combining SIRT1 activators and FXR agonists. 展开更多
关键词 FXR Nuclear receptor ACETYLATION PHOSPHORYLATION Nucleocytoplasmic shuttling DEGRADATION Nonalcoholic steatohepatitis Combinatorial drugs
原文传递
AgTFSI Pretreated Li Anode in LiI-Mediated Li-O_(2)Battery:Enabling Lithiophilic Solid Electrolyte Interphase Generation to Suppress the Redox Shuttling 被引量:1
10
作者 Yuqing Zhang Qian Chen +5 位作者 Dan Li Shuang Qi Yulong Liu Jia Liu Haiming Xie Jiefang Zhu 《CCS Chemistry》 CSCD 2024年第10期2400-2410,共11页
Although lithium iodide(LiI)as a redox mediator(RM)can decrease the overpotential in Li-O_(2)batteries,the stability of the Li anode is still one critical issue due to the redox shuttling.Here,we firstly present a nov... Although lithium iodide(LiI)as a redox mediator(RM)can decrease the overpotential in Li-O_(2)batteries,the stability of the Li anode is still one critical issue due to the redox shuttling.Here,we firstly present a novel approach for generating Ag and LiTFSI enriched Li anode(designated as ALE@Li anode)via a spontaneous substitution between pure Li and bis(trifluoromethanesulfonyl)imide silver,in a LiI-participated Li-O_(2)cell.It can induce the generation of a lithiophilic solid electrolyte interphase(SEI)enriched with Ag,F,and N species(e.g.,Ag_(2)O,Li-Ag alloy,LiF,and Li_(3)N)during cell operation,which contributes to promoting the electrochemical performance through the shuttling inhibition.Compared to a cell with a bare Li anode,the one with as-prepared ALE@Li anode shows an enhanced cyclability,a considerable rate capability,and a good reversibility.In addition,a synchrotron X-ray computed tomography technique is employed to investigate the inhibition mechanism for shuttling effect by monitoring the morphological evolution on the cell interfaces.Therefore,this work highlights the deliberate design in the modified Li anode in an easy-to-operate and cost-effective way as well as providing guidance for the construction of artificial SEI layers to suppress the redox shuttling of RMs in Li-O_(2)batteries. 展开更多
关键词 redox shuttling modified Li anode artificial SEI layer synchrotron X-ray computed tomography Li-O_(2)batteries
在线阅读 下载PDF
Designing metal sulfide-based cathodes and separators for suppressing polysulfide shuttling in lithium-sulfur batteries
11
作者 Guoyin Zhu Qingzhu Wu +5 位作者 Xianghua Zhang Yuwen Bao Xuan Zhang Zhuoyao Shi Yizhou Zhang Lianbo Ma 《Nano Research》 SCIE EI CSCD 2024年第4期2574-2591,共18页
Lithium-sulfur(Li-S)batteries,known for their high energy density,are attracting extensive research interest as a promising next-generation energy storage technology.However,their widespread use has been hampered by c... Lithium-sulfur(Li-S)batteries,known for their high energy density,are attracting extensive research interest as a promising next-generation energy storage technology.However,their widespread use has been hampered by certain issues,including the dissolution and migration of polysulfides,along with sluggish redox kinetics.Metal sulfides present a promising solution to these obstacles regarding their high electrical conductivity,strong chemical adsorption with polysulfides,and remarkable electrocatalytic capabilities for polysulfide conversion.In this review,the recent progress on the utilization of metal sulfide for suppressing polysulfide shuttling in Li-S batteries is systematically summarized,with a special focus on sulfur hosts and functional separators.The critical roles of metal sulfides in realizing high-performing Li-S batteries have been comprehensively discussed by correlating the materials’structure and electrochemical performances.Moreover,the remaining issues/challenges and future perspectives are highlighted.By offering a detailed understanding of the crucial roles of metal sulfides,this review dedicates to contributing valuable knowledge for the pursuit of high-efficiency Li-S batteries based on metal sulfides. 展开更多
关键词 lithium-sulfur batteries metal sulfides polysulfide shuttling sulfur hosts separator coating layers
原文传递
Metallic WO_(2)-Promoted CoWO_(4)/WO_(2) Heterojunction with Intercalation-Mediated Catalysis for Lithium-Sulfur Batteries
12
作者 Chan Wang Pengfei Zhang +8 位作者 Jiatong Li Rui Wang Changheng Yang Fushuai Yu Xuening Zhao Kaichen Zhao Xiaoyan Zheng Huigang Zhang Tao Yang 《Nano-Micro Letters》 2026年第1期154-170,共17页
Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systemat... Lithium-sulfur(Li-S)batteries require efficient catalysts to accelerate polysulfide conversion and mitigate the shuttle effect.However,the rational design of catalysts remains challenging due to the lack of a systematic strategy that rationally optimizes electronic structures and mesoscale transport properties.In this work,we propose an autogenously transformed CoWO_(4)/WO_(2) heterojunction catalyst,integrating a strong polysulfide-adsorbing intercalation catalyst with a metallic-phase promoter for enhanced activity.CoWO_(4) effectively captures polysulfides,while the CoWO_(4)/WO_(2) interface facilitates their S-S bond activation on heterogenous catalytic sites.Benefiting from its directional intercalation channels,CoWO_(4) not only serves as a dynamic Li-ion reservoir but also provides continuous and direct pathways for rapid Li-ion transport.Such synergistic interactions across the heterojunction interfaces enhance the catalytic activity of the composite.As a result,the CoWO_(4)/WO_(2) heterostructure demonstrates significantly enhanced catalytic performance,delivering a high capacity of 1262 mAh g^(−1) at 0.1 C.Furthermore,its rate capability and high sulfur loading performance are markedly improved,surpassing the limitations of its single-component counterparts.This study provides new insights into the catalytic mechanisms governing Li-S chemistry and offers a promising strategy for the rational design of high-performance Li-S battery catalysts. 展开更多
关键词 Lithium sulfur batteries Catalysis Shuttle effect HETEROJUNCTION
在线阅读 下载PDF
A Synchronous Strategy to Zn-Iodine Battery by Polycationic Long-Chain Molecules
13
作者 Da-Qian Cai Hengyue Xu +2 位作者 Tong Xue Jin-Lin Yang Hong Jin Fan 《Nano-Micro Letters》 2026年第1期80-94,共15页
Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from... Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay. 展开更多
关键词 Polyiodide shuttle effect Halogen battery Conversion cathode DENDRITES Polycation molecule
在线阅读 下载PDF
Anionically-Reinforced Nanocellulose Separator Enables Dual Suppression of Zinc Dendrites and Polyiodide Shuttle for Long-Cycle Zn-I_(2) Batteries
14
作者 Wenhui Liu Hong Ma +4 位作者 Lingli Zhao Weiwei Qian Bo Liu Jizhang Chen Yagang Yao 《Nano-Micro Letters》 2026年第2期569-583,共15页
Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit... Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering. 展开更多
关键词 Zinc-iodine batteries Nanocellulose separators Carboxyl functional groups Polyiodide shuttle effect Dendrite suppression
在线阅读 下载PDF
Lactate and lactylation modifications in neurological disorders
15
作者 Yu Gu Keyang Chen +5 位作者 Chunyan Lei Xinglong Yang Lu Wang Linhu Zhao Wen Jiang Qionghua Deng 《Neural Regeneration Research》 2026年第5期1681-1697,共17页
Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein ... Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases. 展开更多
关键词 astrocyte-neuron lactate shuttle theory brain functions brain lactate metabolism central nervous system histone lysine lactylation monocarboxylate transporters nervous system neurodegenerative diseases non-histone lysine lactylation post-translational modifications
暂未订购
Manufacturing process of MOF-based separator for lithium sulfur batteries:A mini review
16
作者 Xing Gao Luofeng Wang +2 位作者 Jia Cheng Jialiang Zhao Xueli Liu 《Chinese Chemical Letters》 2025年第8期96-103,共8页
Metal organic frameworks(MOFs)are crystalline materials with three-dimensional porous network structure.They are obtained by self-assembly of coordinate bond with metal ions as the nodes and organic ligands as the con... Metal organic frameworks(MOFs)are crystalline materials with three-dimensional porous network structure.They are obtained by self-assembly of coordinate bond with metal ions as the nodes and organic ligands as the connecting chains.MOFs have attracted extensive attention from researchers over the years due to their clear pore and rich topological structure.As the typical powder materials,a specific separator manufacturing process must be possessed when incorporating MOFs into lithium sulfur batteries separator.This mini review summarized the manufacturing process of MOFs separator for LSBs in recent years,and summed up the effects and mechanisms of separators prepared by various separator-forming processes on the performance of LSBs,the potential for industrialization of different separator manufacturing processes is also mentioned briefly. 展开更多
关键词 Metal-organic frameworks Lithium sulfurbatteries shuttling effect SEPARATOR Manufacturingprocess
原文传递
Advancements in metal-iodine batteries: progress and perspectives 被引量:2
17
作者 Zi-Zhou Shen Dian-Heng Yu +6 位作者 Hong-Ye Ding Yi Peng Yi-Hao Chen Jing-Wen Zhao Heng-Yue Xu Xiao-Tian Guo Huan Pang 《Rare Metals》 2025年第4期2143-2179,共37页
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c... Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed. 展开更多
关键词 Metal-iodine battery Shuttle effect Metal dendrite Functional modification
原文传递
Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries
18
作者 CHEN Xiaoli LUO Zhihong +3 位作者 XIONG Yuzhu WANG Aihua CHEN Xue SHAO Jiaojing 《无机化学学报》 北大核心 2025年第8期1661-1671,共11页
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface... A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property. 展开更多
关键词 vermiculite nanosheets two-dimensional materials INTERLAYER shuttle effect lithium-sulfur batteries
在线阅读 下载PDF
Bridging Materials and Energy Storage Mechanisms in Zn-I_(2)Batteries
19
作者 Rong-Qi Liu Wen-Shuo Shang Jin-Tao Zhang 《电化学(中英文)》 北大核心 2025年第9期21-45,共25页
Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefitin... Zinc-iodine(Zn-I_(2))batteries have emerged as a compelling candidate for large-scale energy storage,driven by the grow-ing demand for safe,cost-effective,and sustainable alternatives to conventional systems.Benefiting from the inherent advantages of aqueous electrolytes and zinc metal anodes,including high ionic conductivity,low flammability,natural abundance,and high volumetric capacity,Zn-I_(2)batteries offer significant potential for grid-level deployment.This review provides a comprehensive overview of recent progress in three critical domains:positive-electrode engineering,zinc anode stabilization,and in situ characterization methods.On the cathode side,anchoring iodine to conductive matrices effectively mitigates polyiodide shuttling and enhances the kinetics of I−/I_(2)conversion.Advanced in situ characterization has enabled real-time monitoring of polyiodide intermediates(I_(3)−/I_(5)−),offering new insights into electrolyte-electrode interactions and guiding the development of functional additives to suppress shuttle effects.For the zinc anode,innovations such as pro-tective interfacial layers,three-dimensional host frameworks,and targeted electrolyte additives have shown efficacy in suppressing dendrite growth and side reactions,thus improving cycling stability and coulombic efficiency.Despite these advances,challenges remain in achieving long-term reversibility and structural integrity under practical conditions.Future directions include the design of synergistic electrolyte systems,and integrated electrode architectures that simultaneously optimize chemical stability,ion transport and mechanical durability for next-generation Zn-I_(2)battery technologies. 展开更多
关键词 Zinc-iodine battery Interface chemistry Dendrite growth Shuttle effect
在线阅读 下载PDF
Oxygen deficient Eu_(2)O_(3-δ) synchronizes the shielding and catalytic conversion of polysulfides toward high-performance lithium sulfur batteries
20
作者 Ming Xu Teng Deng +8 位作者 Chenzhaosha Li Hongyang Zhao Juan Wang Yatao Liu Jianan Wang Guodong Feng Na Li Shujiang Ding Kai Xi 《Chinese Chemical Letters》 2025年第10期593-598,共6页
Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur ca... Lithium-sulfur batteries(LSBs)are promising energy storage systems due to their low cost and high energy density.However,sluggish reaction kinetics and the“shuttle effect”of lithium polysulfides(LiPSs)from sulfur cathode hinder the practical application of LSBs.In this work,a separator loaded with the Eu_(2)O_(3-δ)nanoparticles/carbon nanotube interlayer is designed to immobilize Li PSs and catalyze their conversion reaction.The oxygen-deficient Eu_(2)O_(3-δ)nanoparticles,with abundant catalytic sites,promote Li PSs conversion kinetics even at high current densities.Moreover,the unique 4f electronic structure of Eu_(2)O_(3-δ)effectively mitigates undesired sulfur cathode crossover,significantly enhancing the cycling performance of LSBs.Specifically,a high capacity of 620.7 mAh/g at a rate of 5 C is achieved,maintaining at 545 mAh/g after 300 cycles at 1 C.This work demonstrates the potential application of rare earth catalysts in LSBs,offering new research avenues for promoting dynamic conversion design in electrocatalysts. 展开更多
关键词 Rare earth catalysts Interlayer structure Shuttle effect Mitigation Lithium-sulfur batteries
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部