This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related ...This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related articles from the empirical,semi-empirical,analytical,and numerical studies.However,the study’s core objective remains to address the persistent challenge that often leads to Burst Pressure Loss(BPL)in a pipeline.These mechanical-associated damages,which can result in BPL,may include pipe scratches,dents,or cracks.Therefore,training a large volume of datasets in neural network architectures or the finite element domain is crucial in this context.The study further explores previous research to gain a deeper insight into how many modes of damage enhance loss in Burst Pressure(BP).The study further synthesises significant reasons why pipeline Structural Health Failures(SHFs)occur,as drawn from existing literature.Failure scenarios in pipeline dent,crack,fracture,buckling,fatigue,corrosion,BPL,and Third-Party Damage(TPD)could result from mechanical deformation,ageing,insufficient real-time monitoring,and TPD influences.Many of the assessed articles conclude that the experimental approach and Finite Element Method(FEM)are valid and can accurately validate one another in the analysis and prediction of pipeline failures.However,this study offers valuable and comprehensive resources for pipeline engineers,academic researchers,and industry professionals.Again,the study is crucial for pipeline fabricators,installers,and operators to keep up with maintenance,repairs,and predictions.展开更多
方波上升和下降沿处电场快速变化引起的位移电流和空间电磁波对局部放电(partial discharge,PD)的测量造成较大干扰。为此设计并检验了一种基于超高频(super high frequency,SHF,3~30 GHz)信号采集和下混频技术,适用于方波电场下绝缘系...方波上升和下降沿处电场快速变化引起的位移电流和空间电磁波对局部放电(partial discharge,PD)的测量造成较大干扰。为此设计并检验了一种基于超高频(super high frequency,SHF,3~30 GHz)信号采集和下混频技术,适用于方波电场下绝缘系统的PD检测方法。系统性能测试验证了SHF混频法能有效抑制方波电源的干扰,混频信号在降低频率的同时也保留了原SHF信号幅值和相位信息,且系统可检测到视在放电量20 pC左右的PD,灵敏度较好。SHF混频法与脉冲电流法和UHF法的对比实验结果表明,SHF混频法适于检测发生在绝缘强度较高材料中放电速度较快的PD。所设计系统在方波下,对环氧树脂和灌封硅胶两种绝缘封装材料进行了PD对比实验,验证了其实用性。展开更多
文摘This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related articles from the empirical,semi-empirical,analytical,and numerical studies.However,the study’s core objective remains to address the persistent challenge that often leads to Burst Pressure Loss(BPL)in a pipeline.These mechanical-associated damages,which can result in BPL,may include pipe scratches,dents,or cracks.Therefore,training a large volume of datasets in neural network architectures or the finite element domain is crucial in this context.The study further explores previous research to gain a deeper insight into how many modes of damage enhance loss in Burst Pressure(BP).The study further synthesises significant reasons why pipeline Structural Health Failures(SHFs)occur,as drawn from existing literature.Failure scenarios in pipeline dent,crack,fracture,buckling,fatigue,corrosion,BPL,and Third-Party Damage(TPD)could result from mechanical deformation,ageing,insufficient real-time monitoring,and TPD influences.Many of the assessed articles conclude that the experimental approach and Finite Element Method(FEM)are valid and can accurately validate one another in the analysis and prediction of pipeline failures.However,this study offers valuable and comprehensive resources for pipeline engineers,academic researchers,and industry professionals.Again,the study is crucial for pipeline fabricators,installers,and operators to keep up with maintenance,repairs,and predictions.