The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and signi...The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.展开更多
Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the we...Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the well logging data,core samples,outcrops,and geochemistry of black shales in the Lianggaoshan Formation in the Sichuan Basin.Our analysis focused on the lake basin evolution and the migration characteristics,paleoenvironmental features,formation mechanisms,and developmental model of the black shales.The results indicated that black shales in the Lianggaoshan Formation exhibited significant lateral migration,with an overall thickening trend from east to west.Within the 1st Member of the formation,black shale occurred as a single thick layer in the eastern region that gradually thinned toward the central region.Multiple sets of shale developed within the 2nd and 3rd members,and these had lower thicknesses than the 1st Member and migrated toward central Sichuan.Paleoproductivity and terrigenous input were the main factors controlling the deposition of black shales.A semi-humid climate influenced the deposition of black shales,bringing abundant freshwater,terrigenous debris,and nutrients into the basin.Decomposition of organic matter consumed oxygen in sediment and bottom water,causing localized oxygen deficiency in the strata.展开更多
Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and developm...Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.展开更多
With the development of unconventional hydrocarbon, how to improve the shale oil and gas recovery become urgent. Therefore hydraulic fracturing becomes the key due to the complicated properties of the reservoirs. The ...With the development of unconventional hydrocarbon, how to improve the shale oil and gas recovery become urgent. Therefore hydraulic fracturing becomes the key due to the complicated properties of the reservoirs. The pore structure not only plays an essential role in the formation of complex fracture networks after fracturing but also in resource accumulation mechanism analyses. The lacustrine organicrich shale samples were selected to carry out petrophysical experiments. Scanning Electron Microscopy(SEM) and X-ray Diffraction were performed to elucidate the geology characteristics. MICP, 2D NMR, CT,and N2adsorption were conducted to classify the pore structure types. The contribution of pore structure to oil accumulation and hydrocarbon enrichment was explained through the N2adsorption test on the original and extracted state and 2D NMR. The results show that micropores with diameter less than20 nm are well-developed. The pore structure was divided into three types. Type Ⅰ is characterized by high porosity, lower surface area, and good pore throat connectivity, with free oil existing in large pores,especially lamellation fractures. The dominant nano-pores are spongy organic pores and resources hosted in large pores have been expelled during high thermal evolution. The content of nano-pores(micropores) increases and the pore volume decreases in Type Ⅱ pore structure. In addition, more absorbed oil was enriched. The pore size distribution of type Ⅱ is similar to that of type Ⅰ. However, the maturity and hydrocarbon accumulation is quite different. The oil reserved in large pores was not expelled attributed to the relatively low thermal evolution compared with type Ⅰ. Structural vitrinite was observed through SEM indicating kerogen of type Ⅲ developed in this kind of reservoir while the type of kerogen in pore structure Ⅰ is type Ⅱ. Type Ⅲ pore structure is characterized by the largest surface area,lowest porosity, and almost isolated pores with rarely free oil. Type Ⅰ makes the most contribution to hydrocarbon accumulation and immigration, which shows the best prospect. Of all of these experiments,N2adsorption exhibits the best in characterizing pores in shales due to its high resolution for the assessment of nano-scale pores. MICP and NMR have a better advantage in characterizing pore space of sandstone reservoirs, even tight sandstone reservoirs. 2D NMR plays an essential role in fluid recognition and saturation calculation. CT scanning provides a 3D visualization of reservoir space and directly shows the relationship between pores and throats and the characteristics of fractures. This study hopes to guide experiment selection in pore structure characterization in different reservoirs. This research provides insight into hydrocarbon accumulation of shales and guidance in the exploration and development of unconventional resources, for example for geothermal and CCUS reservoirs.展开更多
The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. C...The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance(NMR) T1-T2were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption(LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area(SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water.Consequently, pore water is mainly saturated in micropores(<25 nm) and minipores(25-100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores(100-1000 nm) and macropores(>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.展开更多
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay...To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.展开更多
Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characterist...Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characteristics are investigated to identify key factors governing sweet spots.Siliceous shales with good preservation conditions in the Fuling Field exhibit large thickness,high TOC content and thin-section porosity(TSP),and well-developed OM macropores,thus high initial production and estimated ultimate recovery(EUR).Thin carbonate-containing siliceous shales with good preservation conditions in the Weirong Field feature medium-to-high TOC and well-developed OM macropores but low TSP,leading to high initial production but low EUR.Siliceous shales with poor preservation conditions in the Wulong Field are characterized by large thickness,high TOC,low TSP and poorly-developed OM macropores,causing low initial production and EUR.Both sedimentary and preservation conditions are intrinsic decisive factors of sweet spots,as they control the mineral composition,TOC,and OM macropore development.Deep-water shales in transgressive systems tracts(TSTs)exhibit better-developed OM macropores and greater TOC compared to highstand systems tracts(HSTs).OM macropores are most prevalent in siliceous shales,followed by carbonate-containing siliceous shales and then argillaceous shales.Furthermore,good preservation conditions are conducive to retain OM macropores with low pore aspect ratio(PAR).Comparison among the three fields shows that high-TOC silicious shales with good preservation conditions are the highest in TSP and EUR.Therefore,organic richness,lithofacies,and preservation conditions are the major factors which determine OM pore development,governing the sweet spots of the Wufeng-Longmaxi shales.展开更多
As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critic...As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critically documents quartz types,silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales,Middle Yangtze region,South China,including the Lower Cambrian Niutitang Formation and the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations.Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales.Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes.Six types of quartz can be identified in the Paleozoic shales,primarily including detrital quartz silt,siliceous skeletons,quartz overgrowth,microcrystalline quartz(matrix-dispersed microquartz and aggregated microquartz),silica nanospheres and fracture-filling quartz veins.Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales.Authigenic quartz has dual effects on porosity development.Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces,whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.展开更多
Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for o...Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
Organic-rich shales from the Triassic Yanchang Formation in the Ordos Basin in China are mainly derived from aquatic organisms with type II kerogen.A reverse maturity trend,derived from the commonly used biomarker mat...Organic-rich shales from the Triassic Yanchang Formation in the Ordos Basin in China are mainly derived from aquatic organisms with type II kerogen.A reverse maturity trend,derived from the commonly used biomarker maturity parameter Ts/(Ts+Tm)occurs in the depth profiles of the Chang 7_(3) submember and the Chang 8 member.In contrast,maturity proxies derived from aromatic compounds show a normal sequence for more deeply buried Chang 8 samples exhibiting higher maturity levels,as expected.To explain the abnormal phenomenon,multiple controlling factors—including the paleoredox condition,water salinity,the clay mineral content and composition,biodegradation,the primary migration fractionation effect,and organofacies—are considered.It was found that organofacies BC(HIo=400-250)appear in the Chang 8 samples,while organofacies B(HIo=400-650)appear in the Chang 7_(3) submember.The results suggest that variation in organofacies has a significant impact on Ts/(Ts+Tm)values,even for samples with the same kerogen type and similar source input,and is primarily responsible for the reverse maturity trend in the depth profiles.展开更多
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the...In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.展开更多
The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin wer...The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.展开更多
Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological sign...Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.展开更多
China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ...China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.展开更多
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It...Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.展开更多
Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in differen...Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development.展开更多
This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Bo...This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Both the Huadian and Maoming shales exhibit immature indicators in extractable and kerogen-bound hopanoids(notably,high abundance of C_(29)to C_(32)17β,21β-hopanes and unsaturated hopenes).In contrast,the Fushun oil shale's hopanoids from extracts and pyrolyzates suggest a higher maturity level.The absence of neohopenes in the pyrolyzates of the shales underpins that the kerogenbound hopanoid skeletons resist rearrangement.However,the Huadian oil shale's asymmetric distribution of C_(29)and C_(30)hopenes and neohopenes hints at the presence of an additional source.Novel unsaturated hopenes,such as hop-20(21)-enes,identified in pyrolyzates of the three kerogens at various pyrolysis temperatures,reveal the occurrence of double bonds in kerogen-bound hopanoid skeletons without methyl rearrangements.The absence of hop-20-(21)-ene in extracts suggests that it might act as an intermediate of these novel hopenes during the epimerization of hopanoid skeletons within kerogen.The extractable and pyrolytic hopanoids'stereochemical alignment indicates that epimerization may occur in both ring systems and alkyl side chains of kerogen-bound hopanoid skeletons.Sequential stepwise pyrolysis proves to be a quick screening method for geological hopanoids without causing any significant alteration to the original skeletons even when cracking multiple covalent bonds is necessary.展开更多
基金supported by the National Natural Science Foundation of China(41925014).
文摘The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.
基金funded by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103).
文摘Research on the distribution and development of black shales in the Lianggaoshan Formation has been deficient,which has hindered exploration for lacustrine shale oil in the Sichuan Basin.Our study characterized the well logging data,core samples,outcrops,and geochemistry of black shales in the Lianggaoshan Formation in the Sichuan Basin.Our analysis focused on the lake basin evolution and the migration characteristics,paleoenvironmental features,formation mechanisms,and developmental model of the black shales.The results indicated that black shales in the Lianggaoshan Formation exhibited significant lateral migration,with an overall thickening trend from east to west.Within the 1st Member of the formation,black shale occurred as a single thick layer in the eastern region that gradually thinned toward the central region.Multiple sets of shale developed within the 2nd and 3rd members,and these had lower thicknesses than the 1st Member and migrated toward central Sichuan.Paleoproductivity and terrigenous input were the main factors controlling the deposition of black shales.A semi-humid climate influenced the deposition of black shales,bringing abundant freshwater,terrigenous debris,and nutrients into the basin.Decomposition of organic matter consumed oxygen in sediment and bottom water,causing localized oxygen deficiency in the strata.
基金financially supported by the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development(33550000-22-ZC0613-0006)National Natural Science Foundation of China(42202133)+2 种基金CNPC Innovation Fund(2022DQ02-0106)Strategic Cooperation Technology Projects of the CNPC and CUPB(ZLZX2020-01-05)Key Laboratory of Tectonics and Petroleum Resources(China University of Geosciences),Ministry of Education,China(TPR-2023-05)。
文摘Alkaline lacustrine shale is highly heterogeneous,and the complex relationship between the organicinorganic porosity network and hydrocarbon occurrence restricts the effectiveness of shale oil exploration and development.Herein,we investigated the Fengcheng Formation(P_(1)f)in Mahu Sag.This study integrated geochemistry,Soxhlet extraction,scanning electron microscopy,gas adsorption,and nuclear magnetic resonance T_(1)-T_(2)spectroscopy to elucidate the microscopic oil occurrence mechanisms in shales.Results indicate the presence of felsic shale,dolomitic shale,lime shale,and mixed shale within the P_(1)f.Matrix pores and microfractures associated with inorganic minerals are the predominant pore types in P_(1)f.Adsorbed oil primarily resides on the surfaces of organic matter and clay minerals,while free oil predominantly occupies inorganic pores and microfractures with larger pore sizes.Variations exist in the quantity and distribution of shale oil accumulation across different scales,where free oil and adsorbed oil are governed by dominant pores with diameters exceeding 10 nm and ineffective pores with diameters below 10 nm,respectively.Shale oil occurrence characteristics are influenced by organic matter,pore structure,and mineral composition.Felsic shale exhibits a high abundance of dominant pores,possesses the highest oil content,predominantly harbors free oil within these dominant pores,and demonstrates good mobility.Fluid occurrence in dolomitic shale and lime shale is intricate,with low oil content and a free oil to adsorbed oil ratio of 1:1.Mixed shale exhibits elevated clay mineral content and a scarcity of dominant pores.Moreover,ineffective pores contain increased bound water,resulting in medium oil content and limited mobility predominantly due to adsorption.Presently,shale oil mainly occurs in the dominant pores with a diameter larger than 10 nm in a free state.During the exploration and development of alkaline lacustrine shale oil resources,emphasis should be placed on identifying sweet spots within the felsic shale characterized by dominant pores.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42002133)Science Foundation of China University of Petroleum,Beijing No.2462024XKBH009+1 种基金the 2022 AAPG Foundation Grants-in-Aid ProgramChina National Postdoctoral Science Foundation(BX20240425 and 2024M753611)
文摘With the development of unconventional hydrocarbon, how to improve the shale oil and gas recovery become urgent. Therefore hydraulic fracturing becomes the key due to the complicated properties of the reservoirs. The pore structure not only plays an essential role in the formation of complex fracture networks after fracturing but also in resource accumulation mechanism analyses. The lacustrine organicrich shale samples were selected to carry out petrophysical experiments. Scanning Electron Microscopy(SEM) and X-ray Diffraction were performed to elucidate the geology characteristics. MICP, 2D NMR, CT,and N2adsorption were conducted to classify the pore structure types. The contribution of pore structure to oil accumulation and hydrocarbon enrichment was explained through the N2adsorption test on the original and extracted state and 2D NMR. The results show that micropores with diameter less than20 nm are well-developed. The pore structure was divided into three types. Type Ⅰ is characterized by high porosity, lower surface area, and good pore throat connectivity, with free oil existing in large pores,especially lamellation fractures. The dominant nano-pores are spongy organic pores and resources hosted in large pores have been expelled during high thermal evolution. The content of nano-pores(micropores) increases and the pore volume decreases in Type Ⅱ pore structure. In addition, more absorbed oil was enriched. The pore size distribution of type Ⅱ is similar to that of type Ⅰ. However, the maturity and hydrocarbon accumulation is quite different. The oil reserved in large pores was not expelled attributed to the relatively low thermal evolution compared with type Ⅰ. Structural vitrinite was observed through SEM indicating kerogen of type Ⅲ developed in this kind of reservoir while the type of kerogen in pore structure Ⅰ is type Ⅱ. Type Ⅲ pore structure is characterized by the largest surface area,lowest porosity, and almost isolated pores with rarely free oil. Type Ⅰ makes the most contribution to hydrocarbon accumulation and immigration, which shows the best prospect. Of all of these experiments,N2adsorption exhibits the best in characterizing pores in shales due to its high resolution for the assessment of nano-scale pores. MICP and NMR have a better advantage in characterizing pore space of sandstone reservoirs, even tight sandstone reservoirs. 2D NMR plays an essential role in fluid recognition and saturation calculation. CT scanning provides a 3D visualization of reservoir space and directly shows the relationship between pores and throats and the characteristics of fractures. This study hopes to guide experiment selection in pore structure characterization in different reservoirs. This research provides insight into hydrocarbon accumulation of shales and guidance in the exploration and development of unconventional resources, for example for geothermal and CCUS reservoirs.
基金supported by the National Natural Science Foundation of China(42302160)the Sanya City Science and Technology Innovation Project(2022KJCX51)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2022KJ060).
文摘The microscopic occurrence characteristics primarily constrain the enrichment and mobility of shale oil.This study collected the lacustrine shales from the Palaeogene Funing Formation in the Gaoyou Sag, Subei Basin. Conventional and multistage Rock-Eval, scanning electron microscopy, and nuclear magnetic resonance(NMR) T1-T2were performed to analyze the contents and occurrence characteristics of shale oil. Low-temperature nitrogen adsorption-desorption(LTNA/D) experiments were conducted on the shales before and after extraction. The relationships between shale oil occurrence with organic matter and pore structures were then discussed. Predominantly, the shale oil in the Funing Formation is found within fractures, with secondary occurrences in interparticle pores linked to brittle minerals and sizeable intraparticle pores associated with clay minerals. The selected shales can be categorized into two types based on the nitrogen isotherms. Type A shales are characterized by high contents of felsic and calcareous minerals but low clay minerals, with larger TOC and shale oil values. Conversely, Type B shales are marked by abundant clay minerals but diminished TOC and shale oil contents. The lower BET specific surface area(SSA), larger average pore diameter, and simpler pore surfaces and pore structures lead to the Type A shales being more conducive to shale oil enrichment and mobility. Shale oil content is predominantly governed by the abundance of organic matter, while an overabundance of organic matter typically equates to a reduced ratio of free oil and diminished fluidity. The BET SSA, volumes of pores less than 25 and 100 nm at extracted state all correlate negatively with total and adsorbed oil contents but display no correlation with free oil, while they have positive relationships with capillary-bound water.Consequently, pore water is mainly saturated in micropores(<25 nm) and minipores(25-100 nm), as well as adsorbed oil, while free oil, i.e., bound and movable oil, primarily exists in mesopores(100-1000 nm) and macropores(>1000 nm). These findings may enhance the understanding of the microscopic occurrence characteristics of shale oil and will contribute to guide resource estimation and shale oil sweet spot exploitation in the Gaoyou Sag, Subei Basin.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42072150)
文摘To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.
文摘Production performance of the Wufeng-Longmaxi shales varies significantly among Fuling,Weirong,and Wulong fields in the Sichuan Basin.Total organic carbon(TOC)content,mineralogy,and organic matter(OM)pore characteristics are investigated to identify key factors governing sweet spots.Siliceous shales with good preservation conditions in the Fuling Field exhibit large thickness,high TOC content and thin-section porosity(TSP),and well-developed OM macropores,thus high initial production and estimated ultimate recovery(EUR).Thin carbonate-containing siliceous shales with good preservation conditions in the Weirong Field feature medium-to-high TOC and well-developed OM macropores but low TSP,leading to high initial production but low EUR.Siliceous shales with poor preservation conditions in the Wulong Field are characterized by large thickness,high TOC,low TSP and poorly-developed OM macropores,causing low initial production and EUR.Both sedimentary and preservation conditions are intrinsic decisive factors of sweet spots,as they control the mineral composition,TOC,and OM macropore development.Deep-water shales in transgressive systems tracts(TSTs)exhibit better-developed OM macropores and greater TOC compared to highstand systems tracts(HSTs).OM macropores are most prevalent in siliceous shales,followed by carbonate-containing siliceous shales and then argillaceous shales.Furthermore,good preservation conditions are conducive to retain OM macropores with low pore aspect ratio(PAR).Comparison among the three fields shows that high-TOC silicious shales with good preservation conditions are the highest in TSP and EUR.Therefore,organic richness,lithofacies,and preservation conditions are the major factors which determine OM pore development,governing the sweet spots of the Wufeng-Longmaxi shales.
基金financially supported by the SINOPEC Key Laboratory of Geology and Resources in Deep Stratum Foundation(No.33550000-22-ZC0613-0252)the National Natural Science Foundation(Nos.U19B6003,U20B6001 and 42002137)。
文摘As one of the most important constitutes of shales/mudstones,quartz has received increasing interests in the last decades,because productive shale gas successions are generally rich in quartz content.This study critically documents quartz types,silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales,Middle Yangtze region,South China,including the Lower Cambrian Niutitang Formation and the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations.Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales.Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes.Six types of quartz can be identified in the Paleozoic shales,primarily including detrital quartz silt,siliceous skeletons,quartz overgrowth,microcrystalline quartz(matrix-dispersed microquartz and aggregated microquartz),silica nanospheres and fracture-filling quartz veins.Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales.Authigenic quartz has dual effects on porosity development.Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces,whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.
基金jointly funded by the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLC20210104)China Geological Survey(DD20221661)China National Science and Technology Major Project“Test and Application of Shale Gas Exploration and Evaluation Technology(2016ZX05034004)”。
文摘Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formation is the most developed strata of shale gas in southern China.Due to the complex sedimentary environment adjacent to the Kangdian Uplift,the favorable area for organic-rich shale development is still undetermined.The authors,therefore,focus on the mechanism of accumulation of organic matter and the characterization of the sedimentary environment of the Wufeng-Longmaxi Shales to have a more complete understanding and new discovering of organic matter enrichment and favorable area in the marginal region around Sichuan Basin.Multiple methods were applied in this study,including thin section identification,scanning electron microscopy(SEM)observations and X-ray diffraction(XRD),and elemental analysis on outcrop samples.Five lithofacies have been defined according to the mineralogical and petrological analyses,including mudstone,bioclastic limestone,silty shale,dolomitic shale,and carbonaceous siliceous shale.The paleo-environments have been reconstructed and the organic enrichment mechanism has been identified as a reduced environment and high productivity.The Wufeng period is generally a suboxic environment and the early Longmaxi period is a reducing environment based on geochemical characterization.High dolomite content in the study area is accompanied by high TOC,which may potentially indicate the restricted anoxic environment formed by biological flourishing in shallower water.And for the area close to the Kangdian Uplift,the shale gas generation capability is comparatively favorable.The geochemical parameters implied that new favorable areas for shale gas exploration could be targeted,and more shale gas resources in the mountain-basin transitional zone might be identified in the future.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金supported by The National Natural Science Foundation of China(Grant.No 41873049 and 42062011)the Doctoral Scientific Research Foundation of Yulin University,China(Grant No.2024GK12 and 2023GK62)+1 种基金the Youth Innovation Team of Shaanxi Universities,China(Grant.No 23JP200)the technical service project(Grant.No H2024060142).
文摘Organic-rich shales from the Triassic Yanchang Formation in the Ordos Basin in China are mainly derived from aquatic organisms with type II kerogen.A reverse maturity trend,derived from the commonly used biomarker maturity parameter Ts/(Ts+Tm)occurs in the depth profiles of the Chang 7_(3) submember and the Chang 8 member.In contrast,maturity proxies derived from aromatic compounds show a normal sequence for more deeply buried Chang 8 samples exhibiting higher maturity levels,as expected.To explain the abnormal phenomenon,multiple controlling factors—including the paleoredox condition,water salinity,the clay mineral content and composition,biodegradation,the primary migration fractionation effect,and organofacies—are considered.It was found that organofacies BC(HIo=400-250)appear in the Chang 8 samples,while organofacies B(HIo=400-650)appear in the Chang 7_(3) submember.The results suggest that variation in organofacies has a significant impact on Ts/(Ts+Tm)values,even for samples with the same kerogen type and similar source input,and is primarily responsible for the reverse maturity trend in the depth profiles.
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFE0129800)the National Natural Science Foundation of China(Grant No.42202204)。
文摘In-situ upgrading by heating is feasible for low-maturity shale oil,where the pore space dynamically evolves.We characterize this response for a heated substrate concurrently imaged by SEM.We systematically follow the evolution of pore quantity,size(length,width and cross-sectional area),orientation,shape(aspect ratio,roundness and solidity)and their anisotropy—interpreted by machine learning.Results indicate that heating generates new pores in both organic matter and inorganic minerals.However,the newly formed pores are smaller than the original pores and thus reduce average lengths and widths of the bedding-parallel pore system.Conversely,the average pore lengths and widths are increased in the bedding-perpendicular direction.Besides,heating increases the cross-sectional area of pores in low-maturity oil shales,where this growth tendency fluctuates at<300℃ but becomes steady at>300℃.In addition,the orientation and shape of the newly-formed heating-induced pores follow the habit of the original pores and follow the initial probability distributions of pore orientation and shape.Herein,limited anisotropy is detected in pore direction and shape,indicating similar modes of evolution both bedding-parallel and bedding-normal.We propose a straightforward but robust model to describe evolution of pore system in low-maturity oil shales during heating.
基金This work was financially supported by the National Natural Science Foundation of China(41972123,41922015)the Natural Science Foundation of Shandong Province(ZR2020QD036).
文摘The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space.
基金Supported by the Natural Science Foundation of Hebei(D2024501002)Fundamental Research Funds for the Central Universities(N2423020)Major Science and Technology Projects of CNPC(2021ZZ10)。
文摘Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.
基金supported by the project of the China Geological Survey for shale gas in Southern China(DD20221852)the National Natural Science Foundation of China(42242010,U2244208)。
文摘China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.
文摘Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.
基金Supported by the National Natural Science Foundation of China(42272117,42002116).
文摘Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development.
基金funded by the Natural Science Foundation of China(No.42373028,No.42072154).
文摘This study conducted a comparative analysis of extractable hopanoid hydrocarbons and those released via stepwise pyrolysis of typical Eocene immature oil shales in China,namely the Huadian,Maoming,and Fushun shales.Both the Huadian and Maoming shales exhibit immature indicators in extractable and kerogen-bound hopanoids(notably,high abundance of C_(29)to C_(32)17β,21β-hopanes and unsaturated hopenes).In contrast,the Fushun oil shale's hopanoids from extracts and pyrolyzates suggest a higher maturity level.The absence of neohopenes in the pyrolyzates of the shales underpins that the kerogenbound hopanoid skeletons resist rearrangement.However,the Huadian oil shale's asymmetric distribution of C_(29)and C_(30)hopenes and neohopenes hints at the presence of an additional source.Novel unsaturated hopenes,such as hop-20(21)-enes,identified in pyrolyzates of the three kerogens at various pyrolysis temperatures,reveal the occurrence of double bonds in kerogen-bound hopanoid skeletons without methyl rearrangements.The absence of hop-20-(21)-ene in extracts suggests that it might act as an intermediate of these novel hopenes during the epimerization of hopanoid skeletons within kerogen.The extractable and pyrolytic hopanoids'stereochemical alignment indicates that epimerization may occur in both ring systems and alkyl side chains of kerogen-bound hopanoid skeletons.Sequential stepwise pyrolysis proves to be a quick screening method for geological hopanoids without causing any significant alteration to the original skeletons even when cracking multiple covalent bonds is necessary.