期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
风电设备情境知识图谱构建技术研究
1
作者 石致远 孔志伟 +1 位作者 陈俊臻 王淑营 《中国机械工程》 北大核心 2025年第6期1206-1213,共8页
传统知识图谱构建方法未考虑知识的情境约束,难以有效表征风电等复杂机电设备海量知识间复杂的关联关系,限制了知识图谱在实际生产过程中的应用。提出了一种面向风电设备的情境知识图谱构建方法。首先抽取风电设备情境知识、模块元知识... 传统知识图谱构建方法未考虑知识的情境约束,难以有效表征风电等复杂机电设备海量知识间复杂的关联关系,限制了知识图谱在实际生产过程中的应用。提出了一种面向风电设备的情境知识图谱构建方法。首先抽取风电设备情境知识、模块元知识及项目定制产生的模块实例知识,结合形状约束语言(SHACL)构建了包含情境路径和属性值约束的本体模型,精准表征和抽取各类知识;然后提出了基于本体解析的情境知识子图可视化算法,通过解析本体中的情境知识类,为每类情境构建数据观测窗口,实现面向场景的知识子图多维可视化交互。实际应用结果表明,该方法能有效融合模块元知识与项目模块实例知识,满足风电设备知识的精准表征和多样化的应用场景需求。 展开更多
关键词 风电设备 情境知识图谱 情境语义约束 可视化交互引擎 形状约束语言
在线阅读 下载PDF
DAMS:A Distributed Analytics Metadata Schema
2
作者 Sascha Welten Laurenz Neumann +3 位作者 Yeliz Ucer Yediel Luiz Olavo Bonino da Silva Santos Stefan Decker Oya Beyan 《Data Intelligence》 EI 2021年第4期528-547,共20页
In recent years,implementations enabling Distributed Analytics(DA)have gained considerable attention due to their ability to perform complex analysis tasks on decentralised data by bringing the analysis to the data.Th... In recent years,implementations enabling Distributed Analytics(DA)have gained considerable attention due to their ability to perform complex analysis tasks on decentralised data by bringing the analysis to the data.These concepts propose privacy-enhancing alternatives to data centralisation approaches,which have restricted applicability in case of sensitive data due to ethical,legal or social aspects.Nevertheless,the immanent problem of DA-enabling architectures is the black-box-alike behaviour of the highly distributed components originating from the lack of semantically enriched descriptions,particularly the absence of basic metadata for data sets or analysis tasks.To approach the mentioned problems,we propose a metadata schema for DA infrastructures,which provides a vocabulary to enrich the involved entities with descriptive semantics.We initially perform a requirement analysis with domain experts to reveal necessary metadata items,which represents the foundation of our schema.Afterwards,we transform the obtained domain expert knowledge into user stories and derive the most significant semantic content.In the final step,we enable machine-readability via RDF(S)and SHACL serialisations.We deploy our schema in a proof-of-concept monitoring dashboard to validate its contribution to the transparency of DA architectures.Additionally,we evaluate the schema’s compliance with the FAIR principles.The evaluation shows that the schema succeeds in increasing transparency while being compliant with most of the FAIR principles.Because a common metadata model is critical for enhancing the compatibility between multiple DA infrastructures,our work lowers data access and analysis barriers.It represents an initial and infrastructure-independent foundation for the FAIRification of DA and the underlying scientific data management. 展开更多
关键词 Distributed analytics Federated analytics Personal Health Train Metadata schema RDF(S) shacl FAIR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部