期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Combination of super-resolution reconstruction and SGA-Net for marsh vegetation mapping using multi-resolution multispectral and hyperspectral images 被引量:1
1
作者 Bolin Fu Xidong Sun +5 位作者 Yuyang Li Zhinan Lao Tengfang Deng Hongchang He Weiwei Sun Guoqing Zhou 《International Journal of Digital Earth》 SCIE EI 2023年第1期2724-2761,共38页
Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communiti... Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communities has faced great challenges because of its coarse spatial resolution and limited spectral bands.This study aimed to propose a method to classify marsh vegetation using multi-resolution multispectral and hyperspectral images,combining super-resolution techniques and a novel self-constructing graph attention neural network(SGA-Net)algorithm.The SGA-Net algorithm includes a decoding layer(SCE-Net)to preciselyfine marsh vegetation classification in Honghe National Nature Reserve,Northeast China.The results indicated that the hyperspectral reconstruction images based on the super-resolution convolutional neural network(SRCNN)obtained higher accuracy with a peak signal-to-noise ratio(PSNR)of 28.87 and structural similarity(SSIM)of 0.76 in spatial quality and root mean squared error(RMSE)of 0.11 and R^(2) of 0.63 in spectral quality.The improvement of classification accuracy(MIoU)by enhanced super-resolution generative adversarial network(ESRGAN)(6.19%)was greater than that of SRCNN(4.33%)and super-resolution generative adversarial network(SRGAN)(3.64%).In most classification schemes,the SGA-Net outperformed DeepLabV3+and SegFormer algorithms for marsh vegetation and achieved the highest F1-score(78.47%).This study demonstrated that collaborative use of super-resolution reconstruction and deep learning is an effective approach for marsh vegetation mapping. 展开更多
关键词 Marsh vegetation classification super-resolution reconstruction sga-net and SegFormer multispectral and hyperspectral images spectral restoration spatial resolution improvement
原文传递
青岛市短期预报资料综合应用平台功能设计与实现 被引量:2
2
作者 丁炜 江敦双 +1 位作者 赵文雪 王宜明 《气象与环境科学》 2011年第1期84-90,共7页
为综合应用本地探测资料和数值预报产品,青岛市气象局建立了以图形工作站为交互平台的短期预报资料综合应用系统。系统采用Oracle数据库技术、Web技术及Java、ASP编程语言,实现了本地探测资料、部门共享资料、数值预报产品等不同来源的... 为综合应用本地探测资料和数值预报产品,青岛市气象局建立了以图形工作站为交互平台的短期预报资料综合应用系统。系统采用Oracle数据库技术、Web技术及Java、ASP编程语言,实现了本地探测资料、部门共享资料、数值预报产品等不同来源的数据集中显示。 展开更多
关键词 图形工作站 .NET SGA Oracle分区表
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部