期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于细胞神经网络的从阴影恢复形状的新方法 被引量:2
1
作者 王怀颖 于盛林 冯强 《电子学报》 EI CAS CSCD 北大核心 2006年第11期2120-2124,共5页
细胞神经网络(CNN)是一种实时处理信号的大规模非线性模拟电路,它的连续时间特点以及局部互连特点使其可以进行并行计算,并且非常适用于超大规模集成电路(VLSI)的实现.本文针对从阴影恢复形状(SFS)问题,提出了一种基于硬件退火CNN的能... 细胞神经网络(CNN)是一种实时处理信号的大规模非线性模拟电路,它的连续时间特点以及局部互连特点使其可以进行并行计算,并且非常适用于超大规模集成电路(VLSI)的实现.本文针对从阴影恢复形状(SFS)问题,提出了一种基于硬件退火CNN的能量函数优化方法,并对该方法进行了详细分析,给出了实例的仿真结果,验证了该方法的有效性.该方法为并行处理算法,具有运算量小、易于大规模VLSI集成实现,且能够克服局部极小等优点,可以使SFS问题得到实时的处理. 展开更多
关键词 细胞神经网络(CNN) 从阴影恢复形状(SFS) 优化
在线阅读 下载PDF
基于多尺度卷积神经网络的交通标示识别研究 被引量:5
2
作者 刘万军 李嘉欣 曲海成 《计算机应用研究》 CSCD 北大核心 2022年第5期1557-1562,共6页
交通标示识别在自动驾驶领域有着广泛的应用前景。在实际场景中,光照、地理位置、检测方法等因素会对较小交通标示识别产生影响,导致识别精度降低。针对这些问题,提出一种新型多尺度融合卷积神经网络模型(SF-RCNN)。首先在基础特征提取... 交通标示识别在自动驾驶领域有着广泛的应用前景。在实际场景中,光照、地理位置、检测方法等因素会对较小交通标示识别产生影响,导致识别精度降低。针对这些问题,提出一种新型多尺度融合卷积神经网络模型(SF-RCNN)。首先在基础特征提取网络中加入多尺度空洞卷积池化金字塔模块(MASPP),在多尺度空洞卷积采样后,不改变每一个特征下的信息量,而是通过合并通道数来实现特征图的融合,这样既减少了分辨率的损失,也可以捕捉同一图像的上下文信息;其次在网络中增加两个快速拼接模块(F-concat),融合模型中高层与低层的信息,既丰富语义信息,又可以实现不同尺度信息的重复利用;最后在每个最大池化层之前增加批标准化层(BN),转换每一层的数据。尽管增加模块加深了网络深度,但是BN层可以加快模型收敛速度,使整个训练时间不发生较大改变。在CCTSDB数据集上进行特征提取。实验结果表明,该模型利用新型网络结构SF-RCNN,交通标示识别精度均值达到了87.48%,警告类别识别精度达到89.93%,禁令类别识别精度达到89.25%、方向类别识别精度达到81.08%、指示类别识别精度达到89.66%。 展开更多
关键词 卷积神经网络 交通标示识别 SF-RCNN MASPP F-concat
在线阅读 下载PDF
Forecasting NDVI in multiple complex areas using neural network techniques combined feature engineering 被引量:1
3
作者 Changlu Cui Wen Zhang +1 位作者 ZhiMing Hong LingKui Meng 《International Journal of Digital Earth》 SCIE 2020年第12期1733-1749,共17页
NDVI(Normalized difference vegetation index)is a critical variable for monitoring climate change,studying ecological balance,and exploring the pattern of regional phenology.Traditional neural network models only consi... NDVI(Normalized difference vegetation index)is a critical variable for monitoring climate change,studying ecological balance,and exploring the pattern of regional phenology.Traditional neural network models only consider image features in time series prediction,while historical data and its changes play an important role in time series forecasting.For this study,we proposed convolutional neural networks(CNN)combined feature engineering forecasting model(SF-CNN),which integrated both the advantages of image characteristics learned from CNN and statistic characteristics calculated by historical data related to the forecast period to improve the accuracy of NDVI predictions in the next 3 months with 30-day interval at multiple complex areas.To intuitively show the performance of SF-CNN,it was compared with CNN using the same parameters.Results mainly showed that(1)in terms of visual analysis,the texture,pattern,and structure of predicted NDVI using SF-CNN are similar to the observed NDVI,and SF-CNN exhibits strong generalization ability;(2)in terms of quantitative assessment,SF-CNN generally outperforms CNN,and it can improve the reliability and robustness for predicting NDVI through simple statistical characteristics while reducing the uncertainties;(3)SF-CNN can learn seasonal and sudden changes in four different and complex study areas with considerable accuracy and without extra data. 展开更多
关键词 sf-cnn feature engineering CNN NDVI time series prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部