Context:In irrigated agriculture,the salt stress is a major problem due to accumulation of salt from the irrigation water in the soil layers.Objectives:The aim of this study is to determinate the effect of salinity on...Context:In irrigated agriculture,the salt stress is a major problem due to accumulation of salt from the irrigation water in the soil layers.Objectives:The aim of this study is to determinate the effect of salinity on some agromorphological traits and seed nutritional quality of three sesames(Sesamum indicum L.)varieties.Methodology:This is how four solutions of different NaCl concentrations from 0,60,120 to 240 mM were used to water sesame plants at the five-leaves stage and this for two months in completely randomized device with four repetitions.Results:The results show a negative effect of the salinity growth and yield parameters,mineral elements,ascorbic acid(to 21.4% in White cultivar,28% in Brown and 24.2% in Black cultivar from 0 to 240 mM NaCl),oil(to 22.6%in White cultivar,32% in Brown and 25.5% in Black cultivar from 0 to 240 mM NaCl)and accumulation of Na(Sodium)content(to 11.8% in White cultivar,15.3% in Brown and 12.2% in Black cultivar from 0 to 240 mM NaCl),osmolytes as proteins(to 14.5% in White cultivar,11.5% in Brown and 9.6%in Black cultivar from 0 to 240 mM NaCl)and antioxydants components.Varieties White and Brown were less affected by salinity.Conclusion:White variety exhibited higher adaptive potential under salinity stress when compared to Brown variety(rich in fiber)and closely followed by Black variety.Thus White variety could be recommended for consumer oil,minerals and proteins.As for Black variety,it could be used,as glucid and antioxydants additives in food.展开更多
Sesame is the most widely produced oilseed crop with the highest oil content (45.0%–65.0%) in Asia,Africa.The seed contains a high amount of protein (19%–35%),dietary fiber (15%–20%),carbohydrate (14%–20%),polyuns...Sesame is the most widely produced oilseed crop with the highest oil content (45.0%–65.0%) in Asia,Africa.The seed contains a high amount of protein (19%–35%),dietary fiber (15%–20%),carbohydrate (14%–20%),polyunsaturated fatty acids,and micronutrients.It also contains lignans like sesamol,sesamin,and sesamolin,which protect the oil from oxidative rancidity.The seed also provides seed cake with nutritional value after oil extraction,which is used as a biopolymer in the applications of food packaging,bakery,and confectionary industries,as well as in the preparation of edible and coating films.It can replace commercial expanded polystyrene,which is non-biodegradable in nature.Being the richest source of nutrients,sesame seeds and oilseed cakes have been implemented in different food processing industries.The present review focused on the comprehensive study of biochemical compositions,anti-nutrients,phytochemicals,and antioxidants of sesame seeds and seed cakes and their applications in foods industries.展开更多
Sesame production is important in agriculture,food industry,and the crop diversity due to its rich nutritional profile and health benefits.Despite its significant value,sesame is still an orphan crop that has received...Sesame production is important in agriculture,food industry,and the crop diversity due to its rich nutritional profile and health benefits.Despite its significant value,sesame is still an orphan crop that has received little scientific attention,resulting in low yield compared to other major oilseed crops.This review offers a comprehensive overview of the present state of production,knowledge,and research advancements concerning Sesamum indicum on a global scale.The FAOSTAT database was extensively used to examine the global trends from 1961 to 2021.In the past 60 years,global sesame production has substantially increased,with Asia and Africa being the primary producers.The integration of omics technologies and biotechnological interventions has revolutionized our understanding of the genetic basis of sesame,enhanced productivity,invigorated stress resilience,and improved seed quality.High-throughput sequencing methods such as RNA-seq,RAD-seq,SLAF-seq,and GBS technology are used in various studies,linkage mapping,and identification of trait-associated markers.Fine linkage maps,and multi-omics studies such as genomics,proteomics,transcriptomics,and metabolomics have been employed in sesame research for gene and QTL mapping.Proteins and metabolic pathways related to oil content,yield,and stress tolerance were reported.Genes and QTLs related to yield and its components,drought,salt,and osmotic stress tolerance were discovered.Candidate genes associated with capsule shattering and seed shattering were recently revealed.For more achievement in sesame,it is important to enhance sesame production efficiency through mechanization,advanced agricultural practices,and knowledge dissemination to farmers.MAS and multi-omics integration should be particularly reinforced.The advancements in sesame production present a significant and promising opportunity for farmers,governments,and stakeholders in the agricultural sector.展开更多
This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.T...This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.展开更多
This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples we...This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.展开更多
Sesame is a labor intensive crop with limited mechanized harvesting mainly due to the seed shattering(SS)trait.In this study,we performed a genetic analysis of the seed-shattering resistance(SR)trait with a SR sesame ...Sesame is a labor intensive crop with limited mechanized harvesting mainly due to the seed shattering(SS)trait.In this study,we performed a genetic analysis of the seed-shattering resistance(SR)trait with a SR sesame mutant 12M07.Unlike the SS type,the parenchyma cells in the abscission zone of the 12M07 mutant are arranged loosely but adhere to the seed coat.Inheritance analysis of six generations derived from 12M07(SR)×Xiangcheng Dazibai(SS)showed that the SR trait is recessive and controlled by a single gene pair.Association mapping of the F2population with 888,619 variants(single-nucleotide polymorphisms(SNPs)and insertion-deletion(InDels))and 31,884 structural variations(SVs)determined that only SV12002 in the 5′upstream region of gene Sindi0765000(named SiHEC3)in Chr.3 was significantly associated with the SR trait.SiHEC3 encodes the bHLH transcription factor.A 1,049 bp deletion occurred in the 5′UTR of Sihec3 in 12M07.SiHEC3 is mainly expressed in developing placental tissues,with the expression peaking in capsules at 45 days after pollination.A dual-luciferase reporter assay in tobacco confirmed that the promoter activity of Sihec3 was reduced because of the deletion of the 1,049 bp promoter sequence.Protein–protein interaction network analysis showed that HEC3 is co-expressed with nine key proteins,such as SHATTERPROOF1(SHP1)and SEEDSTICK(STK)which participate in the secondary wall biosynthesis of the abscission layer in plants.The findings of this study show the important function of Sihec3corresponding with the SR trait and supply the genetic information for breeding new varieties that are amenable to mechanized harvesting in sesame and other crops.展开更多
The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation...The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.展开更多
The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and ...The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and metabolites of raw and treated black sesame from China,Vietnam,and Myanmar,treated Chinese sesame have the most significant change in hardness after thermal processing,low viscosity and was easy to chew.The electronic nose could distinguish between raw and treated sesame due to the aroma distribution.The reason of treated sesame from China was“fragrant”is due to the highest content(2545.50μg/kg)of total pyrazines including 2,5-dimethylpyrazine,2-ethyl-5-methylpyrazine,2,3,5-trimethylpyrazine,3-ethyl-2,5-dimethylpyrazine.933 metabolites were detected via a wide targeted metabolomics in the taste of raw and treated sesame.Based on the analysis of metabolites related to bitterness,145 substances were selected.The main bitter contributors may be amino acids,dipeptides and organic acids.展开更多
[Objective] The research aimed to establish a optimized combination of intercropping and fertilization application technology of intercropping sesame (Sesamum indicum) and peanut(Arachis hypogaea). [Method] Double...[Objective] The research aimed to establish a optimized combination of intercropping and fertilization application technology of intercropping sesame (Sesamum indicum) and peanut(Arachis hypogaea). [Method] Double factor randomized block design (2 fertilization methods and 5 ratios) was adopted, with 10 treatments, 3 repeats. There were a total of 30 plots, with plot area of 12.0 m2. Two fertilization methods included C1 [base fertilizer (540 g/plot compound fertilizer + topdressing (90 g urea)] and C2 [all as base fertilizer (540 g/plot compound fertilizer)]. Five different proportions (sesame: peanut) were M1(2∶4), M2(2∶6), M3(1∶4), monoculture sesame (CK1) and monoculture peanut (CK2), respectively. [Result] Output value and land equivalent ratio (LER) of C1M2 treatment (6 lines peanut/2 lines sesame, base fertilizer 540 g/plot (compound fertilizer) + (topdressing urea 90 g) were the highest of 22 378.68 yuan/hm2 and 1.56 respectively; sesame yield was 641.64 kg/hm2 and peanut yield was 2 506.67 kg/hm2. Output-input ratio was 4.94. The income was increased by 32.32% and 95.97% compared with only planting of peanuts and sesame. [Conclusion] The study provided a theoretical basis for finding the best intercropping combinations of sesame and peanut and rational application fertilizations.展开更多
[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), ...[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), middle part (at 9th-20th nodes from the bottom) and upper part (above the 20th node) of sesame plants (Zhengzhi 98N09) was counted. The length, width, fresh weight of the capsules, fresh and dry weight of the seeds, and the dry weight of the capsule shel s at dif-ferent growth stages were measured. [Result] From the bottom to the top of sesame plants, the numbers of flowers and capsules at each node showed a trend of first increasing and then decreasing. The 15th and the 12th node had the maxi-mum flower number (9.3 flowers per node on average) and the maximum capsule number (4.2 capsules per node on average), respectively. The middle nodes had the highest capsule setting rate, up to 45.1%, fol owed by that at upper nodes, 30.1%, and the capsule setting rate at lower nodes was the smal est, only 25.0%. The capsule length, width, fresh weight, seed fresh weight, dry weight and capsule shel dry weight at middle part were higher than that at lower and upper part. Moreover, grain fil ing rates of the lower, middle and upper capsules were 0.003 5, 0.004 4 and 0.003 0 g/(capsule·d). It suggests that the substances gave priority to supply the middle capsules during the development of capsules. [Conclusion] This study wil provide theoretical basis for the cultivation of high-yielding sesame.展开更多
文摘Context:In irrigated agriculture,the salt stress is a major problem due to accumulation of salt from the irrigation water in the soil layers.Objectives:The aim of this study is to determinate the effect of salinity on some agromorphological traits and seed nutritional quality of three sesames(Sesamum indicum L.)varieties.Methodology:This is how four solutions of different NaCl concentrations from 0,60,120 to 240 mM were used to water sesame plants at the five-leaves stage and this for two months in completely randomized device with four repetitions.Results:The results show a negative effect of the salinity growth and yield parameters,mineral elements,ascorbic acid(to 21.4% in White cultivar,28% in Brown and 24.2% in Black cultivar from 0 to 240 mM NaCl),oil(to 22.6%in White cultivar,32% in Brown and 25.5% in Black cultivar from 0 to 240 mM NaCl)and accumulation of Na(Sodium)content(to 11.8% in White cultivar,15.3% in Brown and 12.2% in Black cultivar from 0 to 240 mM NaCl),osmolytes as proteins(to 14.5% in White cultivar,11.5% in Brown and 9.6%in Black cultivar from 0 to 240 mM NaCl)and antioxydants components.Varieties White and Brown were less affected by salinity.Conclusion:White variety exhibited higher adaptive potential under salinity stress when compared to Brown variety(rich in fiber)and closely followed by Black variety.Thus White variety could be recommended for consumer oil,minerals and proteins.As for Black variety,it could be used,as glucid and antioxydants additives in food.
文摘Sesame is the most widely produced oilseed crop with the highest oil content (45.0%–65.0%) in Asia,Africa.The seed contains a high amount of protein (19%–35%),dietary fiber (15%–20%),carbohydrate (14%–20%),polyunsaturated fatty acids,and micronutrients.It also contains lignans like sesamol,sesamin,and sesamolin,which protect the oil from oxidative rancidity.The seed also provides seed cake with nutritional value after oil extraction,which is used as a biopolymer in the applications of food packaging,bakery,and confectionary industries,as well as in the preparation of edible and coating films.It can replace commercial expanded polystyrene,which is non-biodegradable in nature.Being the richest source of nutrients,sesame seeds and oilseed cakes have been implemented in different food processing industries.The present review focused on the comprehensive study of biochemical compositions,anti-nutrients,phytochemicals,and antioxidants of sesame seeds and seed cakes and their applications in foods industries.
文摘Sesame production is important in agriculture,food industry,and the crop diversity due to its rich nutritional profile and health benefits.Despite its significant value,sesame is still an orphan crop that has received little scientific attention,resulting in low yield compared to other major oilseed crops.This review offers a comprehensive overview of the present state of production,knowledge,and research advancements concerning Sesamum indicum on a global scale.The FAOSTAT database was extensively used to examine the global trends from 1961 to 2021.In the past 60 years,global sesame production has substantially increased,with Asia and Africa being the primary producers.The integration of omics technologies and biotechnological interventions has revolutionized our understanding of the genetic basis of sesame,enhanced productivity,invigorated stress resilience,and improved seed quality.High-throughput sequencing methods such as RNA-seq,RAD-seq,SLAF-seq,and GBS technology are used in various studies,linkage mapping,and identification of trait-associated markers.Fine linkage maps,and multi-omics studies such as genomics,proteomics,transcriptomics,and metabolomics have been employed in sesame research for gene and QTL mapping.Proteins and metabolic pathways related to oil content,yield,and stress tolerance were reported.Genes and QTLs related to yield and its components,drought,salt,and osmotic stress tolerance were discovered.Candidate genes associated with capsule shattering and seed shattering were recently revealed.For more achievement in sesame,it is important to enhance sesame production efficiency through mechanization,advanced agricultural practices,and knowledge dissemination to farmers.MAS and multi-omics integration should be particularly reinforced.The advancements in sesame production present a significant and promising opportunity for farmers,governments,and stakeholders in the agricultural sector.
基金supported by the project number of“China Agricultural Research System funded by the Ministry of Agriculture”CARS-14,the Key Project of Science and Technology of Henan Province (201300110600)the“Double First-Class”Project for Postgraduate Academic Innovation Enhancement Programme of Henan University of Technology (HAUTSYL2023TS16)Education and Teaching Reform Research and Practice Project in School of International Education,Henan University of Technology (GJXY202407).
文摘This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.
文摘This study investigates the optical properties of sesame oil from traditional and industrial sources using a custom-designed semiconductor laser spectrometer, UV-Vis spectroscopy, and FTIR spectroscopy. Six samples were collected from traditional presses and factories in Khartoum State and White Nile State. The spectrometer, constructed with a 680 nm semiconductor laser and various resistor values, measured the absorbance of sesame oil samples. UV-Vis spectroscopy identified absorbance peaks at 670 nm and 417 nm, corresponding to chlorophyll a and b. FTIR analysis showed nearly identical spectra among the samples, indicating similar chemical compositions. Laser spectrometer analysis revealed specific absorbance values for each sample. The results highlight the feasibility of using a 680 nm semiconductor laser for analyzing sesame oil, providing a cost-effective alternative to other wavelengths. This study demonstrates the potential of integrating traditional methods with modern spectroscopic techniques for the quality assessment of sesame oil.
基金financially supported by the earmarked funding for the China Agriculture Research System of MOF and MARA(CARS-14)the Key Project of Science and Technology of Henan Province,China(201300110600)+6 种基金the Henan Province Specific Professor Position Program,China(SPPP2022)the Zhongyuan Scientist Workshop Construction,China(ZSWC2019 and 214400510026)the Innovation Scientist and Technician Troop Construction Project of Henan Province,China(ISTTCPHP2016)the Shennong Laboratory First Class Program,China(SN01-2022-04)the Key Research and Development Project of Henan Province,China(221111520400)the Innovation Scientists and Technicians Troop Construction Project of Henan Academy of Agricultural Sciences,China(2023TD04)the Henan Province Science and Technology Research and Development Plan Joint Fund,China(232301420108)。
文摘Sesame is a labor intensive crop with limited mechanized harvesting mainly due to the seed shattering(SS)trait.In this study,we performed a genetic analysis of the seed-shattering resistance(SR)trait with a SR sesame mutant 12M07.Unlike the SS type,the parenchyma cells in the abscission zone of the 12M07 mutant are arranged loosely but adhere to the seed coat.Inheritance analysis of six generations derived from 12M07(SR)×Xiangcheng Dazibai(SS)showed that the SR trait is recessive and controlled by a single gene pair.Association mapping of the F2population with 888,619 variants(single-nucleotide polymorphisms(SNPs)and insertion-deletion(InDels))and 31,884 structural variations(SVs)determined that only SV12002 in the 5′upstream region of gene Sindi0765000(named SiHEC3)in Chr.3 was significantly associated with the SR trait.SiHEC3 encodes the bHLH transcription factor.A 1,049 bp deletion occurred in the 5′UTR of Sihec3 in 12M07.SiHEC3 is mainly expressed in developing placental tissues,with the expression peaking in capsules at 45 days after pollination.A dual-luciferase reporter assay in tobacco confirmed that the promoter activity of Sihec3 was reduced because of the deletion of the 1,049 bp promoter sequence.Protein–protein interaction network analysis showed that HEC3 is co-expressed with nine key proteins,such as SHATTERPROOF1(SHP1)and SEEDSTICK(STK)which participate in the secondary wall biosynthesis of the abscission layer in plants.The findings of this study show the important function of Sihec3corresponding with the SR trait and supply the genetic information for breeding new varieties that are amenable to mechanized harvesting in sesame and other crops.
基金This study was supported by the National Key Research and Development Program of China(2023YFD2100403)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+2 种基金the earmarked fund for CARS-14,the Innovation Group Project of Hubei Province(2023AFA042)the Key Research Projects of Hubei Province(2020BBA045)the Knowledge Innovation Program of Wuhan-Basic Research(3562).
文摘The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.
基金Basic research business expenses(Y2023LM18)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and metabolites of raw and treated black sesame from China,Vietnam,and Myanmar,treated Chinese sesame have the most significant change in hardness after thermal processing,low viscosity and was easy to chew.The electronic nose could distinguish between raw and treated sesame due to the aroma distribution.The reason of treated sesame from China was“fragrant”is due to the highest content(2545.50μg/kg)of total pyrazines including 2,5-dimethylpyrazine,2-ethyl-5-methylpyrazine,2,3,5-trimethylpyrazine,3-ethyl-2,5-dimethylpyrazine.933 metabolites were detected via a wide targeted metabolomics in the taste of raw and treated sesame.Based on the analysis of metabolites related to bitterness,145 substances were selected.The main bitter contributors may be amino acids,dipeptides and organic acids.
基金Supported by Program of Southern Cultivation and Soil Fertilizer Station of National Sesame Industry Technology System(CARS-15-1-09)~~
文摘[Objective] The research aimed to establish a optimized combination of intercropping and fertilization application technology of intercropping sesame (Sesamum indicum) and peanut(Arachis hypogaea). [Method] Double factor randomized block design (2 fertilization methods and 5 ratios) was adopted, with 10 treatments, 3 repeats. There were a total of 30 plots, with plot area of 12.0 m2. Two fertilization methods included C1 [base fertilizer (540 g/plot compound fertilizer + topdressing (90 g urea)] and C2 [all as base fertilizer (540 g/plot compound fertilizer)]. Five different proportions (sesame: peanut) were M1(2∶4), M2(2∶6), M3(1∶4), monoculture sesame (CK1) and monoculture peanut (CK2), respectively. [Result] Output value and land equivalent ratio (LER) of C1M2 treatment (6 lines peanut/2 lines sesame, base fertilizer 540 g/plot (compound fertilizer) + (topdressing urea 90 g) were the highest of 22 378.68 yuan/hm2 and 1.56 respectively; sesame yield was 641.64 kg/hm2 and peanut yield was 2 506.67 kg/hm2. Output-input ratio was 4.94. The income was increased by 32.32% and 95.97% compared with only planting of peanuts and sesame. [Conclusion] The study provided a theoretical basis for finding the best intercropping combinations of sesame and peanut and rational application fertilizations.
基金Supported by Earmarked Fund for China Agriculture Research System(CAES-15)Science and Technology Cooperation Project of Henan Province and Chinese Academy of Sciences(112106000023)~~
文摘[Objective] This study aimed to explore the capsule development at differ-ent positions of sesame (Sesamum indicum). [Method] The number of flowers and capsules at lower part (below the 8th node from the bottom), middle part (at 9th-20th nodes from the bottom) and upper part (above the 20th node) of sesame plants (Zhengzhi 98N09) was counted. The length, width, fresh weight of the capsules, fresh and dry weight of the seeds, and the dry weight of the capsule shel s at dif-ferent growth stages were measured. [Result] From the bottom to the top of sesame plants, the numbers of flowers and capsules at each node showed a trend of first increasing and then decreasing. The 15th and the 12th node had the maxi-mum flower number (9.3 flowers per node on average) and the maximum capsule number (4.2 capsules per node on average), respectively. The middle nodes had the highest capsule setting rate, up to 45.1%, fol owed by that at upper nodes, 30.1%, and the capsule setting rate at lower nodes was the smal est, only 25.0%. The capsule length, width, fresh weight, seed fresh weight, dry weight and capsule shel dry weight at middle part were higher than that at lower and upper part. Moreover, grain fil ing rates of the lower, middle and upper capsules were 0.003 5, 0.004 4 and 0.003 0 g/(capsule·d). It suggests that the substances gave priority to supply the middle capsules during the development of capsules. [Conclusion] This study wil provide theoretical basis for the cultivation of high-yielding sesame.