Type I interferon(IFN-I)exhibits broad-spectrum antiviral properties and is commonly employed in clinical for the treatment of viral infections.In this study,we unveil SENP6 as a potent regulator of IFN-I antiviral ac...Type I interferon(IFN-I)exhibits broad-spectrum antiviral properties and is commonly employed in clinical for the treatment of viral infections.In this study,we unveil SENP6 as a potent regulator of IFN-I antiviral activity.SENP6 does not impact the production of IFN-I induced by viruses but rather modulates IFN-I-activated signaling.Mechanistically,SENP6 constitutively interacts with USP8 and inhibits the SUMOylation of USP8,consequently restricting the interaction between USP8 and IFNAR2.The dissociation of USP8 from IFNAR2 enhances IFNAR2 ubiquitination and degradation,thus attenuating IFN-I antiviral activity.Correspondingly,the downregulation of SENP6 promotes the interaction between USP8 and IFNAR2,leading to a reduction in IFNAR2 ubiquitination and,consequently,an enhancement in IFN-I-induced signaling.This study deciphers a critical deSUMOylation-deubiquitination crosstalk that finely regulates the IFN-I response to viral infection.展开更多
基金National Natural Science Foundation of China(31970844,32170927)to SDX.
文摘Type I interferon(IFN-I)exhibits broad-spectrum antiviral properties and is commonly employed in clinical for the treatment of viral infections.In this study,we unveil SENP6 as a potent regulator of IFN-I antiviral activity.SENP6 does not impact the production of IFN-I induced by viruses but rather modulates IFN-I-activated signaling.Mechanistically,SENP6 constitutively interacts with USP8 and inhibits the SUMOylation of USP8,consequently restricting the interaction between USP8 and IFNAR2.The dissociation of USP8 from IFNAR2 enhances IFNAR2 ubiquitination and degradation,thus attenuating IFN-I antiviral activity.Correspondingly,the downregulation of SENP6 promotes the interaction between USP8 and IFNAR2,leading to a reduction in IFNAR2 ubiquitination and,consequently,an enhancement in IFN-I-induced signaling.This study deciphers a critical deSUMOylation-deubiquitination crosstalk that finely regulates the IFN-I response to viral infection.