期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
Semiparametric Regression and Model Refining 被引量:13
1
作者 SUN Haiyan WU Yun 《Geo-Spatial Information Science》 2002年第4期10-13,共4页
This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presen... This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method. 展开更多
关键词 model error systematric error semiparametric regression model refine regularizer matrix smoothing parameter
在线阅读 下载PDF
FIXED-DESIGN SEMIPARAMETRIC REGRESSION FOR LINEAR TIME SERIES 被引量:8
2
作者 胡舒合 《Acta Mathematica Scientia》 SCIE CSCD 2006年第1期74-82,共9页
This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained u... This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed. 展开更多
关键词 Fixed-design semiparametric regression linear time series
在线阅读 下载PDF
ON CONFIDENCE REGIONS OF SEMIPARAMETRIC NONLINEAR REGRESSION MODELS(A GEOMETRIC APPROACH) 被引量:3
3
作者 朱仲义 唐年胜 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期68-75,共8页
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kin... A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models. 展开更多
关键词 confidence regions CURVATURES nonlinear regression models score statistic semiparametric models
在线阅读 下载PDF
Statistical Diagnosis and Gross Error Test for Semiparametric Linear Model 被引量:1
4
作者 DING Shijun ZHANG Songlin JIANG Weiping WANG Shouchun 《Geo-Spatial Information Science》 2009年第4期296-302,共7页
This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testi... This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn. 展开更多
关键词 parametric regression semiparametric linear model influencing analysis statistical diagnosis gross error testing
原文传递
Asymptotic Properties of Wavelet Estimators in a Semiparametric Regression Model with Censored Data 被引量:1
5
作者 HU Hongchang FENG Yuan 《Wuhan University Journal of Natural Sciences》 CAS 2012年第4期290-296,共7页
Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of param... Consider a semiparametric regression model Y_i=X_iβ+g(t_i)+e_i, 1 ≤ i ≤ n, where Y_i is censored on the right by another random variable C_i with known or unknown distribution G. The wavelet estimators of parameter and nonparametric part are given by the wavelet smoothing and the synthetic data methods. Under general conditions, the asymptotic normality for the wavelet estimators and the convergence rates for the wavelet estimators of nonparametric components are investigated. A numerical example is given. 展开更多
关键词 semiparametric regression model censored data wavelet estimate asymptotic normality convergence rate in probability
原文传递
Generalized Ridge Estimation of a Semiparametric Regression Model
6
作者 Hongchang Hu Shaolin Rao 《Wuhan University Journal of Natural Sciences》 CAS 2010年第4期283-286,共4页
We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained desig... We considered the following semiparametric regres-sion model yi = X iT β+ s ( t i ) + ei (i =1,2,,n). First,the general-ized ridge estimators of both parameters and non-parameters are given without a restrained design matrix. Second,the generalized ridge estimator will be compared with the penalized least squares estimator under a mean squares error,and some conditions in which the former excels the latter are given. Finally,the validity and feasibility of the method is illustrated by a simulation example. 展开更多
关键词 semiparametric regression model GENERALIZED RIDGE ESTIMATION penalized least SQUARES ESTIMATION mean SQUARES ERROR
原文传递
SEMIPARAMETRIC REGRESSION MODELS WITH LOCALLY GENERALIZED GAUSSIAN ERROR'S STRUCTURE
7
作者 胡舒合 《Acta Mathematica Scientia》 SCIE CSCD 1998年第S1期68-77,共10页
This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean cons... This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean consistency are obtained under a locally generallied Gaussinan error's structure. Finally, the author showes that the usual weight functions based on nearest neighbor method satisfy the deigned assumptions imposed. 展开更多
关键词 semiparametric regression Locally generalized Garussian error Strong consistency Rib mean consistency
在线阅读 下载PDF
Stressed portfolio optimization with semiparametric method
8
作者 Chuan-Hsiang Han Kun Wang 《Financial Innovation》 2022年第1期821-854,共34页
Tail risk is a classic topic in stressed portfolio optimization to treat unprecedented risks,while the traditional mean–variance approach may fail to perform well.This study proposes an innovative semiparametric meth... Tail risk is a classic topic in stressed portfolio optimization to treat unprecedented risks,while the traditional mean–variance approach may fail to perform well.This study proposes an innovative semiparametric method consisting of two modeling components:the nonparametric estimation and copula method for each marginal distribution of the portfolio and their joint distribution,respectively.We then focus on the optimal weights of the stressed portfolio and its optimal scale beyond the Gaussian restriction.Empirical studies include statistical estimation for the semiparametric method,risk measure minimization for optimal weights,and value measure maximization for the optimal scale to enlarge the investment.From the outputs of short-term and long-term data analysis,optimal stressed portfolios demonstrate the advantages of model flexibility to account for tail risk over the traditional mean–variance method. 展开更多
关键词 Portfolio optimization Tail risk semiparametric method Kernel method Copula method Risk measure Risk-sensitive value measure Scaling effect
在线阅读 下载PDF
Strong Consistency of Estimators of a Semiparametric Regression Model under Fixed Design
9
作者 TIAN Ping XUE Liu-gen 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期202-209,共8页
In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp... In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions. 展开更多
关键词 semiparametric regression model least square estimation weight function strong consistency
在线阅读 下载PDF
Heteroscedasticity check in nonlinear semiparametric models based on nonparametric variance function
10
作者 QU Xiao-yi LIN Jin-guan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期401-409,共9页
The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is... The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example. 展开更多
关键词 heteroscedasticity check nonlinear semiparametric regression model asymptotic normality nonparametric variance function
在线阅读 下载PDF
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
11
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 semiparametric PARTIALLY Linear Varying-Coefficient Model MISSING RESPONSES CLUSTER DATA Group Lasso
在线阅读 下载PDF
A Simulation Study on Comparing General Class of Semiparametric Transformation Models for Survival Outcome with Time-Varying Coefficients and Covariates
12
作者 Yemane Hailu Fissuh Tsegay Giday Woldu +1 位作者 Idriss Abdelmajid Idriss Ahmed Abebe Zewdie Kebebe 《Open Journal of Statistics》 2019年第2期169-180,共12页
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr... The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible. 展开更多
关键词 Estimating Equation semiparametric Transformation Models TIME-TO-EVENT Outcomes TIME-VARYING COEFFICIENTS TIME-VARYING COVARIATE
暂未订购
Semiparametric Estimation of Multivariate GARCH Models
13
作者 Claudio Morana 《Open Journal of Statistics》 2015年第7期852-858,共7页
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlatio... The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series. 展开更多
关键词 MULTIVARIATE GARCH Model Dynamic CONDITIONAL CORRELATION semiparametric ESTIMATION
暂未订购
Environmental Inequality in China’s Urban Expansion:A Case Study of Guangzhou,China
14
作者 WANG Shaogu SHEN Jing 《Chinese Geographical Science》 2025年第1期187-202,共16页
Environmental inequality is a prevalent issue in developing countries undergoing urban expansion.Urban expansion induces the formation and evolution of environmental inequality by creating environmental and structural... Environmental inequality is a prevalent issue in developing countries undergoing urban expansion.Urban expansion induces the formation and evolution of environmental inequality by creating environmental and structural conditions that lead to the spatial relocation of environmental hazards and the socio-spatial segregation of different groups in developing countries.This study investigated the spatial patterns and temporal trends of environmental inequality under urban expansion in Guangzhou,a megacity in China.It considered how environmental disparities and socio-demographic attributes interact in terms of industrial pollution exposure using additive semiparametric quantile regression,combined with spatial visualisation,on the basis of the economic and population census data from 1990 to 2020.This study revealed that urban expansion sparked the spatial displacement of environmental risks and the social-spatial differentiation,exposing the peripheral regions and disadvantaged groups to higher environmental risks.A reciprocal transformation occurred between central and peripheral regions,as well as a process of redistributing environmental risks across social space.In the context of urban expansion in developing countries,the causes of environmental inequality shifted from individual socio-economic differences to structural factors,such as industrial layout and social division of labour in cities,leading to the spatial displacement and concealment of environmental inequality.This study provides insights and guidance for policymakers to address the issue of environmental inequality in the context of urban expansion. 展开更多
关键词 environmental inequality urban expansion spatiotemporal evolution additive semiparametric quantile regression Guangzhou China
在线阅读 下载PDF
Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data 被引量:12
15
作者 Gao Rong LI Ping TIAN Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2029-2040,共12页
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode... In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals. 展开更多
关键词 longitudinal data semiparametric regression model empirical likelihood confidence region
原文传递
ASYMPTOTIC NORMALITY OF SOME ESTIMATORS IN A FIXED-DESIGN SEMIPARAMETRIC REGRESSION MODEL WITH LINEAR TIME SERIES ERRORS 被引量:10
16
作者 JinhongYOU CHENMin GemaiCHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第4期511-522,共12页
Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is con... Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k. 展开更多
关键词 semiparametric regression model fixed-design asymptotic normality lineartime series errors
原文传递
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
17
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
Convergence Rates of Wavelet Estimators in Semiparametric Regression Models Under NA Samples 被引量:9
18
作者 Hongchang HU Li WU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第4期609-624,共16页
Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and... Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings. 展开更多
关键词 semiparametric regression model Wavelet estimate Negativelyassociated random error Strong convergence rate
原文传递
Average Estimation of Semiparametric Models for High-Dimensional Longitudinal Data 被引量:5
19
作者 ZHAO Zhihao ZOU Guohua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第6期2013-2047,共35页
Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weig... Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weights using a leave-subject-out cross-validation procedure.Asymptotic optimality of the proposed method is proved in the sense that leave-subject-out cross-validation achieves the lowest possible prediction loss asymptotically.Simulation studies show that the performance of the proposed model average method is much better than that of some commonly used model selection and averaging methods. 展开更多
关键词 Asymptotic optimality high-dimensional longitudinal data leave-subject-out cross-validation model averaging semiparametric models
原文传递
Bootstrap Approximation of Wavelet Estimates in a Semiparametric Regression Model 被引量:4
20
作者 Liu Gen XUE Qiang LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第4期763-778,共16页
The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the... The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method. 展开更多
关键词 bootstrap approximation confidence interval semiparametric regression model strong uniform convergence wavelet estimate
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部