Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-...Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.展开更多
CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and ...CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.展开更多
Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we de...Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we designed and fabricated a multiphase Ti-Mo-Ag composite(TMA)with heterogeneous triple-phase precipitation(TPP)structure by spark plasma sintering.A lamellarα-phase(αL)precipitates from theβ-phase under furnace cooling conditions and maintains a Burgers orientation relationship(BOR)withβ-matrix.An active eutectic transition also occurs in the titanium matrix,resulting in TiAg phase.The intersecting acicular TiAg and lamellarαL cutβgrains into fine blocks and the primary equiaxedαphase also provides many interfaces withβphase,which together effectively impede dislocation move-ment and increase strength.Compared with other titanium composites,TMA with TPP microstructure gets an excellent combination of strength(yield strength 1205 MPa)and toughness(fracture strain 27%).Furthermore,the TPP structure endows TMA with strong cracking resistance,which aids in reducing abra-sive debris at high temperatures during sliding and obtaining a low wear rate.Simultaneously,Ag parti-cles distributed at grain boundaries will easily diffuse to the wear surface,in situ forming the necessary lubricating phase Ag_(2)MoO_(4) with Mo-rich matrix debris via oxidation.TMA possesses excellent tribologi-cal properties with especially low wear rate of 8.0 x 10^(-6)mm^(3)N^(-1)m^(-1) and friction coefficient(CoF)of merely 0.20 at 600℃.Unlike other self-lubricating composites with high volume fraction of soft ceramic lubricants,which inevitably sacrifice their mechanical strength and ductility,the composite TMA pos-sesses well-balanced strength,toughness and self-lubricating properties.It holds important implications to design other metal matrix self-lubricating composites(MMSCs)used for load-bearing moving parts.展开更多
Metal matrix self-lubricating materials lie at the core of cutting-edge aerospace,mechanical,and electrical industries,which demand technological performances that cannot be met by traditional liquid lubricants.Rapid ...Metal matrix self-lubricating materials lie at the core of cutting-edge aerospace,mechanical,and electrical industries,which demand technological performances that cannot be met by traditional liquid lubricants.Rapid innovation in nanocarbon materials in recent years enabled rapid development of advanced nanocomposites for applications in structural engineering and functional devices.Carbonous materials(e.g.,graphite,graphene and carbon nanotubes),exhibit a wide range of unique electrical,mechanical,and thermal properties,which are also considered ideal lubricating reinforcements for metal matrix nanocomposites(MMCs)with superior mechanical and tribological properties.In this review,we first showcase the distinctive features of the constituents commonly employed in self-lubricating MMCs,encompassing the high-strength metallic matrix and nano-carbonous reinforcement.Then,we present a comprehensive overview of the recent advancements in preparation techniques for these advanced MMCs,followed by an in-depth discussion on their corresponding tribological properties and wear mechanisms.We close this review by outlining key problems to be solved and the future trend of the development in self-lubricating MMCs.展开更多
The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperatur...The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600 ℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2 W2 O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3 SiC2 and 5 wt% Ag2 W2 O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07×10-5-9.89×10-5 mm3/(Nm) over a wide temperature range from room temperature to 600 ℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides.展开更多
In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It...In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.展开更多
A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition para...A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.展开更多
The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel dis...The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.展开更多
Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based c...Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based composite coatings,resulting in engine vibration and even jam.Many past studies had tried to solve this problem by reducing coating hardness,improving lubrication,or strengthening blade tips,but all had failed.In this paper,we proposed a novel epoxy-based composite abradable seal coating,eliminating adhesive transfer by changing metal-to-metal scraping pair to metal-to-polymer scraping pair.The coating was developed via a hierarchical structure design.Large spherical pores were uniformly distributed in the continuous epoxy matrix with fine graphite dispersion.By adding 20 vol.%graphite and 50 vol.%hollow microspheres,a self-lubricating epoxy-based coating of 0.26 friction coefficient with thermal conductivity of 0.28 W/(m·K),coating HR15 Y hardness at 54.8,and bonding strength at 18.7 MPa can be reached.When the metallic blades scrape the epoxy-based composite coating,no adhesive transfer occurs.Besides,a smooth scraped surface is formed by pseudoplastic deformation.This epoxy-based composite abradable seal coating opens a new way to improve the efficiency and reliable operations of air engine compressors.展开更多
Three different thicknesses of self-lubricated coatings were prepared on galvanized steel sheets with differ- ent surface roughness (Ra). Performances of the coatings were evaluated by various laboratory tests. Scan...Three different thicknesses of self-lubricated coatings were prepared on galvanized steel sheets with differ- ent surface roughness (Ra). Performances of the coatings were evaluated by various laboratory tests. Scanning elec- tron microscopy (SEM), atomic force microscope (AFM), neutral salt spraying test (NSST), reciprocating friction and wear test were taken in order to characterize the coatings. Results show that the self-lubricated coating has good corrosion resistance and lubricating property. In 0. 857--1. 629 /~m of Ra value, the relationship between friction co- efficients of the self lubricated steel sheets and the surface roughness of the galvanized steel sheets likes a parabolic curve, and has a peak value of friction coefficient in certain range of Ra. Affected by the hereditary surface topogra- phy of the galvanized steel sheet, dents on the surface of sel^lubricated steel become deeper and larger with the in crease of the surface roughness of the galvanized steel sheets. The influence of the surface roughness of the galvanized steel sheet on the corrosion resistance of the self lubricated coating steel is similar to that on friction coefficient of selPlubricated coatings, like a parabolic curve.展开更多
Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. Th...Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. The effects of graphite and MoSs contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions, respectively. Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photo- electron spectroscopy (XPS). The results indicated that density, hardness and bending strength all increased with the increasing content of MoS2, while the relative density was opposite. Sample B containing 15 vol. pct graphite and 15 vol. pct MoS2 pos- sessed superior tribological properties both in air and vacuum conditions. However, the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions. In air, the volume ratio of MoS2 and graphite in the tribo-films is 0.31:1 whereas the ratio in vacuum is 1.07:1.展开更多
Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N load...Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.展开更多
Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_...Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.展开更多
Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graph...Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is~1.43×10^(-5) mm³ N-1 m-1.The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500℃.Once it was oxidized at 600℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13%and 21%,respectively,in comparison with the case of oxidation at 500℃.展开更多
Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.I...Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite.展开更多
Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication p...Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication performance of the cermet. The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method (FEM). From the FEM analyses, the optimal gradient structure design was obtained correspond- ing to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = I ram. According to the optimum design, a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique. Compared with the homogenous graphite/cermets composite, the surface hardness and indentation fracture toughness of graded compos- ite were increased by approximately 15.9% and 6.3%, respectively. The results of X-ray diffraction (XRD) stress measurement identified the existence of residual compressive stress on the surface of graded com- posite. Additionally, the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design, whereas the coefficient of friction changed slightly.展开更多
In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surfac...In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surface topography after corrosion in acid solution and vapour of the four kinds of material,graphite,polymer,BN composite and cermet,it was found that,graphite has good corrosion-resistant to acid solution and vapour under 200℃,but the corrosion-resistant will become worse dramatically under 400℃,polymer has worse corrosion-resistant behavior above 200℃.By comparison,BN self-lubricating composite has better hot-resistant and corrosion-resistant,which can meet the demand of the work condition.展开更多
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 p...The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.展开更多
The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into c...The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.展开更多
Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication perform...Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.展开更多
基金Project 2006A021 supported by the Science Foundation of China University of Mining & Technology
文摘Graphite antimony composites were prepared using a mechanical pressure infiltration method to force molten antimony into graphite preforms having a percolation micro-structure and a hop-pocket power filler. The micro-structural and macroscopic properties of the graphite antimony composites were analysed. Observations included metallographic analysis, physical properties and friction and wear behaviour. The results show that the wear loss is decreased by 12.24% and that the friction coefficient is re-duced by 32.61% after hop-pocket power was used. The research indicates that the hop-pocket power method gives a useful way to reduce friction coefficients and wear loss, and to increase service life and self-lubrication properties, of the graphite antimony seal-ing material as compared to carbon black.
基金supported by the Natural Science Foundation of China(Nos.52175188 and 52274367)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-434)+2 种基金he Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology(No.LKLAMTF202301)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012378)the Science and Technology on Reactor System Design Technology Laboratory.
文摘CoCrNi medium-entropy alloy has demonstrated remarkable mechanical properties,suggesting its potential as a structural material.Nevertheless,the challenge lies in achieving an elusive combination of high hardness and inherent self-lubrication on the worn surface,which is crucial for attaining exceptional tribological performance in medium-entropy alloy(MEA).This study reports the preparation of a novel CoCrNi-based self-lubricating composite by powder metallurgy,which is reinforced simultaneously with Ag solid lubricating phase and SiC ceramic particles.During the sintering process,SiC decomposes to form high hardness in situ Cr_(23)C_(6),enabling the composite to achieve high load-bearing capacity.During the sliding process,thick and dense Ag self-lubricating film is successfully achieved due to the mechanical and thermal effects.The protective tribo-layer effectively mitigates surface stress concentration induced by wear,thereby inhibiting surface coarsening and substantially enhancing the tribological performance.The results showed that compared with CoCrNi MEA,the wear rate and friction coefficient of CoCrNi/SiC/Ag composite are reduced by 88.1%and 32.8%,respectively,showing superior tribological properties over most MEA-based self-lubrication composites.This study further elucidates the wear mechanism of CoCrNi/SiC/Ag composite,providing a new strategy for developing self-lubricating materials with excellent comprehensive performance,which overcomes the inherent trade-off between wear resistance and lubrication.
基金National Natural Science Foundation of China(No.51871051)Fourth Batch of Ningxia Youth Talents Supporting Program(No.TJGC2019028).
文摘Titanium alloys are of keen interest as lightweight structural materials for aerospace and automotive in-dustries.However,a longstanding problem for these materials is their poor tribological performances.Herein,we designed and fabricated a multiphase Ti-Mo-Ag composite(TMA)with heterogeneous triple-phase precipitation(TPP)structure by spark plasma sintering.A lamellarα-phase(αL)precipitates from theβ-phase under furnace cooling conditions and maintains a Burgers orientation relationship(BOR)withβ-matrix.An active eutectic transition also occurs in the titanium matrix,resulting in TiAg phase.The intersecting acicular TiAg and lamellarαL cutβgrains into fine blocks and the primary equiaxedαphase also provides many interfaces withβphase,which together effectively impede dislocation move-ment and increase strength.Compared with other titanium composites,TMA with TPP microstructure gets an excellent combination of strength(yield strength 1205 MPa)and toughness(fracture strain 27%).Furthermore,the TPP structure endows TMA with strong cracking resistance,which aids in reducing abra-sive debris at high temperatures during sliding and obtaining a low wear rate.Simultaneously,Ag parti-cles distributed at grain boundaries will easily diffuse to the wear surface,in situ forming the necessary lubricating phase Ag_(2)MoO_(4) with Mo-rich matrix debris via oxidation.TMA possesses excellent tribologi-cal properties with especially low wear rate of 8.0 x 10^(-6)mm^(3)N^(-1)m^(-1) and friction coefficient(CoF)of merely 0.20 at 600℃.Unlike other self-lubricating composites with high volume fraction of soft ceramic lubricants,which inevitably sacrifice their mechanical strength and ductility,the composite TMA pos-sesses well-balanced strength,toughness and self-lubricating properties.It holds important implications to design other metal matrix self-lubricating composites(MMSCs)used for load-bearing moving parts.
基金support by the National Key Research and Development Program of China(2022YFB3809000)the Natural Science Foundation of China(No.52175188)+2 种基金Key Research and Development Program of Shaanxi Province(2023-YBGY-434)the Open Fund of Liaoning Provincial Key Laboratory of Aero-engine Materials Tribology(Grant No.LKLAMTF202301)State Key Laboratory for Mechanical Behavior of Materials(20222412).
文摘Metal matrix self-lubricating materials lie at the core of cutting-edge aerospace,mechanical,and electrical industries,which demand technological performances that cannot be met by traditional liquid lubricants.Rapid innovation in nanocarbon materials in recent years enabled rapid development of advanced nanocomposites for applications in structural engineering and functional devices.Carbonous materials(e.g.,graphite,graphene and carbon nanotubes),exhibit a wide range of unique electrical,mechanical,and thermal properties,which are also considered ideal lubricating reinforcements for metal matrix nanocomposites(MMCs)with superior mechanical and tribological properties.In this review,we first showcase the distinctive features of the constituents commonly employed in self-lubricating MMCs,encompassing the high-strength metallic matrix and nano-carbonous reinforcement.Then,we present a comprehensive overview of the recent advancements in preparation techniques for these advanced MMCs,followed by an in-depth discussion on their corresponding tribological properties and wear mechanisms.We close this review by outlining key problems to be solved and the future trend of the development in self-lubricating MMCs.
基金Funded by National Natural Science Foundation of China(No.51805183)
文摘The tribological properties of Nickel-based composites containing Ti3 SiC2 and Ag2 W2 O7 fabricated by spark plasma sintering against Si3 N4 balls were investigated using a ball-on-disk tribometer from room temperature to 600 ℃. The tribolayers formed on the friction surface and their effects on the tribological properties of composites at different temperatures were discussed based on the worn surface characterization. The results show that Ag2 W2 O7 is decomposed into metallic silver and CrWO4 during the high-temperature fabrication process. The composite with the addition of 20 wt% Ti3 SiC2 and 5 wt% Ag2 W2 O7 exhibits a friction coefficient of 0.33-0.49 and a wear rate of 7.07×10-5-9.89×10-5 mm3/(Nm) over a wide temperature range from room temperature to 600 ℃. The excellent tribological properties at a wide temperature range are attributed to the formation of a glaze layer at low temperature and a tribooxide layer at high temperature, which can provide a low shearing strength for the synergistic effects of Ag and tribooxides.
文摘In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.
文摘A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.
基金supported by the National Natural Science Foundation of China (No. 51701010)the Beijing Jiaotong University Foundation for youth scientists (No. No.2017RC013)+1 种基金the Project National United Engineering Laboratory for Advanced Bearing Tribology-Henan University of Science and Technology (No. 201805)the Beijing Government Funds for the Constructive Project of Central Universities (No. 353139535)
文摘The dry sliding wear behavior of Ti_2AlC reinforced AZ91 magnesium composites was investigated at sliding velocity of 0.5 m/s under loads of 10, 20, 40 and 80 N using pin-on-disk configuration against a Cr15 steel disc. Wear rates and friction coefficients were registered during wear tests. Worn tracks and wear debris were examined by scanning electron microscopy, energy dispersive X-ray spectrometry and transmission electron microscopy in order to obtain the wear mechanisms of the studied materials. The main mechanisms were characterized as the magnesium matrix oxidation and self-lubrication of Ti_2AlC MAX phase. In all conditions, the composites exhibit superior wear resistance and self-lubricated ability than the AZ91 Mg alloy. In addition, the anisotropic mechanisms in tribological properties of textured Ti_2AlC-Mg composites were confirmed and discussed.
基金financially supported by the National Science and Technology Major Project(No.2017-VII-0012-0107)the National Program for Support of Top-notch Young Professionals。
文摘Aluminum-based composite abradable seal coatings are pivotal to improving the efficiency of aero engines or gas turbines.However,the adhesive transfer frequently occurs between metallic blade tips and aluminum-based composite coatings,resulting in engine vibration and even jam.Many past studies had tried to solve this problem by reducing coating hardness,improving lubrication,or strengthening blade tips,but all had failed.In this paper,we proposed a novel epoxy-based composite abradable seal coating,eliminating adhesive transfer by changing metal-to-metal scraping pair to metal-to-polymer scraping pair.The coating was developed via a hierarchical structure design.Large spherical pores were uniformly distributed in the continuous epoxy matrix with fine graphite dispersion.By adding 20 vol.%graphite and 50 vol.%hollow microspheres,a self-lubricating epoxy-based coating of 0.26 friction coefficient with thermal conductivity of 0.28 W/(m·K),coating HR15 Y hardness at 54.8,and bonding strength at 18.7 MPa can be reached.When the metallic blades scrape the epoxy-based composite coating,no adhesive transfer occurs.Besides,a smooth scraped surface is formed by pseudoplastic deformation.This epoxy-based composite abradable seal coating opens a new way to improve the efficiency and reliable operations of air engine compressors.
基金Sponsored by National Natural Science Foundation of China(51071052)National Key Technology Research and Development Program in 12th Five-year Plan of China(2012BAJ13B03)
文摘Three different thicknesses of self-lubricated coatings were prepared on galvanized steel sheets with differ- ent surface roughness (Ra). Performances of the coatings were evaluated by various laboratory tests. Scanning elec- tron microscopy (SEM), atomic force microscope (AFM), neutral salt spraying test (NSST), reciprocating friction and wear test were taken in order to characterize the coatings. Results show that the self-lubricated coating has good corrosion resistance and lubricating property. In 0. 857--1. 629 /~m of Ra value, the relationship between friction co- efficients of the self lubricated steel sheets and the surface roughness of the galvanized steel sheets likes a parabolic curve, and has a peak value of friction coefficient in certain range of Ra. Affected by the hereditary surface topogra- phy of the galvanized steel sheet, dents on the surface of sel^lubricated steel become deeper and larger with the in crease of the surface roughness of the galvanized steel sheets. The influence of the surface roughness of the galvanized steel sheet on the corrosion resistance of the self lubricated coating steel is similar to that on friction coefficient of selPlubricated coatings, like a parabolic curve.
基金financially supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91026018)the National Natural Science Foundation of China (No. 60979017)the Doctoral Fund of Ministry of Education of China (No. 20110111110015)
文摘Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoSs) were fabricated by P/M hot pressing techniques. Physical and mechan- ical properties of the samples were examined. The effects of graphite and MoSs contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions, respectively. Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photo- electron spectroscopy (XPS). The results indicated that density, hardness and bending strength all increased with the increasing content of MoS2, while the relative density was opposite. Sample B containing 15 vol. pct graphite and 15 vol. pct MoS2 pos- sessed superior tribological properties both in air and vacuum conditions. However, the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions. In air, the volume ratio of MoS2 and graphite in the tribo-films is 0.31:1 whereas the ratio in vacuum is 1.07:1.
文摘Two kinds of bronze-graphite-MoS_(2) self-lubricating materials with copper-coated MoS_(2) and uncoated MoS_(2) were prepared by powder metallurgy.Friction and wear experiments were carried out under 4 N and 10 N loads respectively,and the effects of copper-coated MoS_(2) on the friction performances of the materials were studied.Results showed that the way of copper-coated on the surface of MoS_(2) could reinforce the bonding between MoS_(2) and matrix,and inhibited the formation of MoO_(2).Moreover,both materials formed a MoS_(2) lubricating film on the surface during the friction process.While the lubricating film formed after copper coating on MoS_(2) was thicker and had uneven morphology,it was more conducive to improving the friction performance of the material.Compared with conventional materials,the wear rate of copper-coated materials was reduced by one order of magnitude,and the friction coefficient was also reduced by 22.44% and 22.53%,respectively,when sliding under 4 N and 10 N loads.It shows that copper-coated MoS_(2)can improve friction properties of bronze-graphite-MoS_(2)self-lubricating materials furtherly.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(51671217).
文摘Eutectic high entropy alloys(EHEAs)have high temperature stability,good mechanical properties,and are promising for tribological applications at high temperatures.To study the high temperature lubrication behavior,Fe_(22)Co_(26)Cr_(20)Ni_(22)Ta_(10)−(BaF_(2)/CaF_(2))x(x=3−20,wt.%)composites were prepared by spark plasma sintering(SPS),with BaF_(2)/CaF_(2) eutectic powder used as solid lubricant.The lubrication behavior and mechanical properties were studied at both room and high temperatures.With the increase of the content of BaF_(2)/CaF_(2) eutectic powder,the friction coefficients and the wear rates of the composites at 600 and 800℃ decrease significantly.The composites with eutectic powder content of 15 and 20 wt.%have the best lubricating performance at 600℃,with low friction coefficient and wear rates,mainly due to the good mechanical properties of EHEA matrix,the lubrication effect of BaF_(2)/CaF_(2) phase and the oxides formed on the worn surface.
基金financially supported by the Fundamental Research Funds for the Central Universities(Nos.N180212008 and N181003001)the Ministry of Industry and Information Technology Project(No.MJ-2017-J-99)。
文摘Nickel-graphite self-lubricating composites are a promising candidate to be used in turbine constructions that are usually exposed to high temperature oxidation and wear.However,the high-temperature stability of graphite as well as the effect that the oxide scale will play on the following wear process are still yet in debate.In this work,oxidation behavior of a NiCrAl-graphite composite and the subsequent friction and wear performances were studied.Results indicate that graphite is stable in the composites after oxidation at T≤400℃ for 300 h,which contributes synergistically with the thin oxide film to self-lubrication.The friction coefficient is below 0.20 and the wear rate is~1.43×10^(-5) mm³ N-1 m-1.The composite has the highest friction coefficient and wear rate when it was suffered from the high temperature oxidation at 500℃.Once it was oxidized at 600℃,a glaze layer would develop during the subsequent sliding.It plays a positive role in improving tribological properties though in the absence of lubricant phase of graphite,with to be exactly the friction coefficient and wear rate reduced by 13%and 21%,respectively,in comparison with the case of oxidation at 500℃.
基金financially supported by the National Natural Science Foundation of China(No.51871051)。
文摘Self-lubricating composites(SLCs)are widely used in the fields of aerospace and marine,but the conventional NiCr matrix SLCs with sulfide as solid lubricant often suffer from low wear resistance at high temperatures.In view of its high affinity with oxygen and also the high oxidation rate,appropriate amount of nano Ti was added to NiCr-WS_(2)composites prepared by spark plasma sintering(SPS)to adjust the oxidation behavior and surface texture.When exposed to high temperature,Ti was preferentially oxidized in comparison to Ni and Cr,resulting in abundant TiO_(2)protrusions and microdimples on the surface,i.e.in situ surface texturing.Besides,TiO_(2)was of high chemical activity and readily to react with other oxide debris during high temperature sliding process to form compounds of NiTiO_(3)and CrTi_(2)O_(5).The high chemical activity of oxide debris that was conducive to sintering,combining with the special surface texture that stores as many wear debris as possible,promoted the rapid formation of a protective glaze layer on the sliding surface.The NiCr-WS_(2)-Ti composite exhibited low friction coefficient but high wear resistance at elevated temperatures.Especially at 800℃,it presented a wear rate of as low as(2.1±0.3)×10^(-5)mm^3N-1m^(-1),accounting for only 2.7%of that of NiCr-WS_(2)composite.
基金financially supported by the Nation Natural Science Foundation of China (Grant No.51575368)
文摘Based on the functionally graded materials (FGMs) design concept, the laminated-graded graphite/cermets self-lubricating composite was prepared to achieve the integration of mechanical prop- erties and lubrication performance of the cermet. The effects of the layer number and thickness of graded structure on residual stresses in the gradient composites were investigated by finite element method (FEM). From the FEM analyses, the optimal gradient structure design was obtained correspond- ing to the following parameters: the number of graded layers n = 2 and the thickness of graded structure t = I ram. According to the optimum design, a graded graphite/cermets self-lubricating material with two layers was fabricated by a typical powder metallurgy technique. Compared with the homogenous graphite/cermets composite, the surface hardness and indentation fracture toughness of graded compos- ite were increased by approximately 15.9% and 6.3%, respectively. The results of X-ray diffraction (XRD) stress measurement identified the existence of residual compressive stress on the surface of graded com- posite. Additionally, the friction and wear tests revealed that the wear resistance of the graphite/cermets self-lubricating composite was improved significantly via the graded structural design, whereas the coefficient of friction changed slightly.
文摘In some adjusting mechanism,solid self-lubricating material that has hot-resistant and corrosion-resistant is need for adapting the work condition.In the present article,by the comparison study of mass loss and surface topography after corrosion in acid solution and vapour of the four kinds of material,graphite,polymer,BN composite and cermet,it was found that,graphite has good corrosion-resistant to acid solution and vapour under 200℃,but the corrosion-resistant will become worse dramatically under 400℃,polymer has worse corrosion-resistant behavior above 200℃.By comparison,BN self-lubricating composite has better hot-resistant and corrosion-resistant,which can meet the demand of the work condition.
文摘The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29?34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg-10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.
文摘The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.
文摘Four kinds of galvanized steel sheets having different surface roughness values were used to prepare the steel sheets with a self-lubricated coating. The effects of surface roughness on the surface lubrication performance of the steel sheets were examined using a friction coefficient tester. Results revealed large dynamic friction coefficients for the galvanized steel sheets, which increased remarkably with surface roughness. Once the self-lubricated coating was applied, significant drops in the dynamic friction coefficients were measured. After the first stage of the friction test,the coefficients were almost unchanged, which reflected a weak dependence on the surface roughness of the self-lubricated steel sheets. However, the dynamic friction coefficients gradually increased as the test progressed, where these increase clearly correlated with the surface roughness of the self-lubricated steel sheets.