Renewable power generation is a suitable technology used to deliver energy locally to customers especially in remote regions. Wind energy based on induction generator situates in a foreground position in the total ene...Renewable power generation is a suitable technology used to deliver energy locally to customers especially in remote regions. Wind energy based on induction generator situates in a foreground position in the total energy produced using renewable sources. In the last few decades, a new self- excitation generator was based on multi-stator induction strongly emerges. This article presents a systematic modelling, a detailed analysis and the performance analysis of self-excitation dual stator winding induction generator (SE-DSWIG). The modelling of the SE-DSWIG was done with taking in account the common mutual leakage inductance between stators and the magnetizing inductance, which played a principal role in the stabilization of the output voltage in the steady state. The generator feeds the end user emulated by an inductive-resistive load. In order to simulate the weather conditions’ variation, a step change of the prime mover speed was applied on the SE-DSWIG. A passive series and shunt compensator was used to mitigate the voltage sag and swell appeared in the power system due to wind variation and the lack of reactive power consumed by the inductive load.展开更多
Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective s...Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective standoff distance, too. The basic theories of theSEOPJN are introduced. Some experimental results are shown. According to the results, using tricornbits assembled the SEOPJN to drill oil well, the ROP increases by 8 percent approx 77 percent, andthe rates of the footage for tricorn bit increases by 6.7 percent approx 44.0 percent.展开更多
A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the...A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.展开更多
Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Drago...Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Dragon Washbasin. The mechanism of nonlinear damping is analyzed; the approximate analytical solution of self-excited vibration of piecewise-smooth nonlinear systems induced by dry friction is derived by means of KB Method, the results of which agree well with that of the numerical solution. Therefore, the method presented in this paper is proved to be very efficient in analyzing the self-excited vibration of piecewise-smooth systems induced by dry friction.展开更多
Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water dr...Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water droplets spurt from fourteen or twelve areas of the Chinese culture relic dragon washbasin when it is rubbed with hands, and clarify the mechanism of the singular high-order self-excited vibration. The experimental modes and the practical measured results are presented for a special dragon washbasin. The theoretical results agree well with the experimental ones.展开更多
It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles...It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, d...This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.展开更多
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-ex...The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-excited vibration behavior and instability evolution of the rotor.Experiments are conducted to validate the theoretical results.The coupled dynamic equations for the rotor system connected with the floating spline are derived through the combination of finite element method and lumped parameter model.A hybrid numerical approach of precise integration and Runge-Kutta method is adopted to examine the effects of the friction coefficient of spline’s tooth surface,torque,and eccentricity on the self-excited vibration of the rotor system.The results show that the spline friction leads to negative damping and inputs energy into the rotor system under supercritical conditions,triggering self-excited vibration when the input energy exceeds a specific level.With the same parameters,the experimentally obtained axial trajectory and primary frequency components are consistent with the theoretical results,verifying the accuracy of the proposed theoretical model.This study can serve as a useful theoretical guide for the dynamic stability design of flexible rotor systems with the floating spline.展开更多
Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an...Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.展开更多
The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related w...The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.展开更多
Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmitta...Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.展开更多
Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model ...This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.展开更多
A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical po...A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.展开更多
In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn b...In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the rate of penetration (ROP) increases by 8% - 77%, and the rate of the footage for tricorn bit increases by 6.7% - 44%. Although the test was conducted in the water, good result was got in nature gas transportation. The volume of gas transportation could be increased by the Self-excited Oscillation Pulsed generator while the gas pressure drop could be decreased, since it significantly reduced the pressure loss during gas transportation.展开更多
This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to ca...This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to cause collision of flocculated grains in water and the shearing force is the primary one. Based on this mechanism, a new type of self-excited oscillation pipeline flocculator is designed.展开更多
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the...A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.展开更多
In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development p...In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.展开更多
文摘Renewable power generation is a suitable technology used to deliver energy locally to customers especially in remote regions. Wind energy based on induction generator situates in a foreground position in the total energy produced using renewable sources. In the last few decades, a new self- excitation generator was based on multi-stator induction strongly emerges. This article presents a systematic modelling, a detailed analysis and the performance analysis of self-excitation dual stator winding induction generator (SE-DSWIG). The modelling of the SE-DSWIG was done with taking in account the common mutual leakage inductance between stators and the magnetizing inductance, which played a principal role in the stabilization of the output voltage in the steady state. The generator feeds the end user emulated by an inductive-resistive load. In order to simulate the weather conditions’ variation, a step change of the prime mover speed was applied on the SE-DSWIG. A passive series and shunt compensator was used to mitigate the voltage sag and swell appeared in the power system due to wind variation and the lack of reactive power consumed by the inductive load.
基金National Natural Science Foundation of China (No.59979029)
文摘Comparing with usual continuous jet nozzle, the self-excited oscillationpulsed jet nozzle SEOPJN) can make jet generate a higher peak of pressure and larger scouringvolume. And it can make jet increase the effective standoff distance, too. The basic theories of theSEOPJN are introduced. Some experimental results are shown. According to the results, using tricornbits assembled the SEOPJN to drill oil well, the ROP increases by 8 percent approx 77 percent, andthe rates of the footage for tricorn bit increases by 6.7 percent approx 44.0 percent.
基金supported by the National Natural Science Foundation of China(Nos.11972139 and 51676204)。
文摘A study of shock train self-excited oscillation in an isolator with background waves was implemented through a wind tunnel experiment.Dynamic pressure data were captured by high-frequency pressure measurements and the flow field was recorded by the high-speed Schlieren technique.The shock train structure was mostly asymmetrical during self-excited oscillation,regardless of its oscillation mode.We found that the pressure discontinuity caused by background waves was responsible for the asymmetry.On the wall where the pressure at the leading edge of the shock train was lower,a large separation region formed and the shock train deflected toward to the other wall.The oscillation mode of the shock train was related to the change of wall pressure in the oscillation range of its leading edge.The oscillation range and oscillation intensity of the shock train leading edge were affected by the wall pressure gradient induced by background waves.When located in a negative pressure gradient region,the oscillation of the leading edge strengthened;when located in a positive pressure gradient region,the oscillation weakened.To find out the cause of self-excited oscillation,correlation and phase analyses were performed.The results indicated that the instability of the separation region induced by the leading shock was the source of perturbation that caused self-excited oscillation,regardless of the oscillation mode of the shock train.
文摘Based on our previous work, a mathematical model of piecewise-smooth systems is established by means of phase-plane orbit analysis, and it is then used to study the intersting phenomena of Chinese cultural relic Dragon Washbasin. The mechanism of nonlinear damping is analyzed; the approximate analytical solution of self-excited vibration of piecewise-smooth nonlinear systems induced by dry friction is derived by means of KB Method, the results of which agree well with that of the numerical solution. Therefore, the method presented in this paper is proved to be very efficient in analyzing the self-excited vibration of piecewise-smooth systems induced by dry friction.
基金The project supported by the National Natural Science Foundation of China (19872003)
文摘Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water droplets spurt from fourteen or twelve areas of the Chinese culture relic dragon washbasin when it is rubbed with hands, and clarify the mechanism of the singular high-order self-excited vibration. The experimental modes and the practical measured results are presented for a special dragon washbasin. The theoretical results agree well with the experimental ones.
基金Supported by National Natural Science Foundation of China(Grant No.51705445)Hebei Provincial Natural Science Foundation of China,(Grant No.E2016203324)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China(Grant No.GZKF-201714)
文摘It is a great challenge to find effective atomizing technology for reducing industrial pollution; the twin-fluid atomizing nozzle has drawn great attention in this field recently. Current studies on twin-fluid nozzles mainly focus on droplet breakup and single droplet characteristics. Research relating to the influences of structural parameters on the droplet diameter characteristics in the flow field is scarcely available. In this paper, the influence of a self-excited vibrating cavity structure on droplet diameter characteristics was investigated. Twin-fluid atomizing tests were performed by a self-built open atomizing test bench, which was based on a phase Doppler particle analyzer(PDPA). The atomizing flow field of the twin-fluid nozzle with a self-excited vibrating cavity and its absence were tested and analyzed. Then the atomizing flow field of the twin-fluid nozzle with different self-excited vibrating cavity structures was investigated.The experimental results show that the structural parameters of the self-excited vibrating cavity had a great effect on the breakup of large droplets. The Sauter mean diameter(SMD) increased with the increase of orifice diameter or orifice depth. Moreover, a smaller orifice diameter or orifice depth was beneficial to enhancing the turbulence around the outlet of nozzle and decreasing the SMD. The atomizing performance was better when the orifice diameter was2.0 mm or the orifice depth was 1.5 mm. Furthermore, the SMD increased first and then decreased with the increase of the distance between the nozzle outlet and self-excited vibrating cavity, and the SMD of more than half the atomizing flow field was under 35 μm when the distance was 5.0 mm. In addition, with the increase of axial and radial distance from the nozzle outlet, the SMD and arithmetic mean diameter(AMD) tend to increase. The research results provide some design parameters for the twin-fluid nozzle, and the experimental results could serve as a beneficial supplement to the twin-fluid nozzle study.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.
基金supported by the National Natural Science Foundation of China,China(No.52005253)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,China(No.22KJB130004)+2 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20200426)the Postdoctoral Science Foundation of Jiangsu Province,China(No.2021K075A)the National Key Laboratory of Science and Technology on Helicopter Transmission,China(No.HTL-O-21G08)。
文摘The internal friction of floating spline can cause self-excited vibration of a supercritical flexible rotor system.To address this issue,a high-efficiency dynamic modeling method is proposed to investigate the self-excited vibration behavior and instability evolution of the rotor.Experiments are conducted to validate the theoretical results.The coupled dynamic equations for the rotor system connected with the floating spline are derived through the combination of finite element method and lumped parameter model.A hybrid numerical approach of precise integration and Runge-Kutta method is adopted to examine the effects of the friction coefficient of spline’s tooth surface,torque,and eccentricity on the self-excited vibration of the rotor system.The results show that the spline friction leads to negative damping and inputs energy into the rotor system under supercritical conditions,triggering self-excited vibration when the input energy exceeds a specific level.With the same parameters,the experimentally obtained axial trajectory and primary frequency components are consistent with the theoretical results,verifying the accuracy of the proposed theoretical model.This study can serve as a useful theoretical guide for the dynamic stability design of flexible rotor systems with the floating spline.
基金The project supported by the National Natural Science Foundation of China
文摘Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.
基金Supported by the National Natural Science Foundation of China(51175379)
文摘The launch shudder phenomenon induced by self-excited vibration of driveline was stud- ied with a compact car equipped with AMT as research object. The research showed that self-excited vibration was closely related with damping of driveline, the variation of friction coefficient, equiva- lent radius of friction plate and applied force of pressure plate. Six DOFs torsional vibration model of vehicle driveline was established according to the parameters of the certain compact car. The simula- tion was carried out and the result was compared with test data. It was found that the negative slope of friction coefficient with relative slip speed does not necessarily lead to self-excited vibration and the frequency of self-excited vibration on 1st gear is near to the 1st order of torsional natural frequen- cy. The influence of each viscous damping in driveline on self-excited vibration was analyzed by sim- ulation and the results showed that increasing the torsional dampings of half-axles and tires properly was effective to improve launch shudder phenomenon.
基金support from the National Nature Science Foundation of China (Grants 11372305 and 11002138)K.C. Wong Education Foundation for a Royal Society K.C. Wong Postdoctoral Fellowship
文摘Self-excited oscillation in a collapsible tube is an important phenomenon in physiology. An experimental approach on self-excited oscillation in a thin-walled collapsi- ble tube is developed by using a high transmittance and low Young's modulus silicone rubber tube. The elastic tube is manufactured by the method of centrifugal casting in our laboratory. An optical method for recording the evolution of the cross-sectional areas at a certain position along the longitudinal direction of the tube is developed based on the technology of refractive index matching. With the transparent tube, the tube law is measured under the static no-flow condition. The cross section at the middle position of the tube transfers from a quasi-circular configuration to an ellipse, and then to a dumbell-shape as the chamber pressure is increased. During the self-excited oscillation, two periodic self-excited oscillating states and one transitional oscillating state are identified. They all belong to the LU mode. These different oscillating states are related to the initial cross-sectional shape of the tube caused by the difference of the downstream transmural pressure.
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金Projects(11302252,11202230) supported by the National Natural Science Foundation of China
文摘This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.
文摘A novel 6D dissipative model with an unstable equilibrium point is introduced herein.Some of the dynamic characteristics of the proposed model were explored via analyses and numerical simulations including critical points,stability,Lyapunov exponents,time phase portraits,and circuit implementation.Also,anti-synchronization phenomena were implemented on the new system.Firstly,the error dynamics is found.Then,four different controllers are adopted to stabilize this error relying on the nonlinear control technique with two main ways:linearization and Lyapunov stability theory.In comparison with previous works,the present controllers realize anti-synchronization based on another method/linearization method.Finally,a comparison between the two ways was made.The simulation results show the effectiveness and accuracy of the first analytical strategy.
文摘In this paper, the basic theories of the Self-excited Oscillation Pulsed Jet Nozzle (SEOPJN) invented by the authors are introduced. Then, some experimental results are shown. According to the results, using tricorn bits assembled the SEOPJN to drill oil well, the rate of penetration (ROP) increases by 8% - 77%, and the rate of the footage for tricorn bit increases by 6.7% - 44%. Although the test was conducted in the water, good result was got in nature gas transportation. The volume of gas transportation could be increased by the Self-excited Oscillation Pulsed generator while the gas pressure drop could be decreased, since it significantly reduced the pressure loss during gas transportation.
文摘This paper presents the research on the dynamic mechanism of flocculation based on the characteristcs of turbulent flow. The shearing force and the centrifugal force transferred by the vortex are the main forces to cause collision of flocculated grains in water and the shearing force is the primary one. Based on this mechanism, a new type of self-excited oscillation pipeline flocculator is designed.
基金supported by the National Natural Science Foundation of China(No.51275429)
文摘A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.
基金Supported by National Natural Science Foundation of China(52174170,51974109)Basic Research Funds of Henan Polytechnic University(NSFRF220205)Strategic Consulting Research Project of Henan Research Institute of China Engineering Science and Technology Development Strategy(2022HENZDB03)。
文摘In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.