Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., t...Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity, and there are low-velocity, low-density and high-conductive layers deep in the epicentral regions. The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed, i.e., tectonic movement and intracrustal explosion.展开更多
The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture,...The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture, geothermalstructure in the crust and upper mantle in Yunnan area. The results show that the occurrence of strong earthquakes in Yunnan region is obviously related to the deep medium and tectonic environment such as the existenceof the high velocity zone in the upper crust, the low velocity zone or high electrical conductivity layer in themiddle crust, local uplift in the upper mantle, high geothermal activity and deep and large fault, etc. The large earthquakes could not take place at anywhere, they often occur at some regions which have a certainbackground in the deep medium structure. The activity of the earthquakes with magnitude of 5 or less is quite random,the occurrence of them have not the obvious background of the deep medium strUcture.展开更多
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical chara...This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.展开更多
According to the 3-D velocity images of the crust and upper mantle in Xinjiang and its adjacent areas and the projective distribution of epicenters at different depths, this paper reveals the relationship between the ...According to the 3-D velocity images of the crust and upper mantle in Xinjiang and its adjacent areas and the projective distribution of epicenters at different depths, this paper reveals the relationship between the velocity structure feature of the crust and upper mantle and seismicity in the studied areas, and also reveals the deep seismogenic environment in the Tianshan earthquake belt, intermediate and deep focus earthquake region in Hindu Kush, intermediate earthquake belts (regions) in west Kunlun and Kalakorum Mountain and so on different earthquake belts. The seismogenesis is also discussed.展开更多
In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservo...In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.展开更多
基金State Natural Science Foundation of China (4977230).
文摘Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity, and there are low-velocity, low-density and high-conductive layers deep in the epicentral regions. The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed, i.e., tectonic movement and intracrustal explosion.
文摘The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture, geothermalstructure in the crust and upper mantle in Yunnan area. The results show that the occurrence of strong earthquakes in Yunnan region is obviously related to the deep medium and tectonic environment such as the existenceof the high velocity zone in the upper crust, the low velocity zone or high electrical conductivity layer in themiddle crust, local uplift in the upper mantle, high geothermal activity and deep and large fault, etc. The large earthquakes could not take place at anywhere, they often occur at some regions which have a certainbackground in the deep medium structure. The activity of the earthquakes with magnitude of 5 or less is quite random,the occurrence of them have not the obvious background of the deep medium strUcture.
基金supported by the Key Projects of China Seismic Array(201308011)Earthquake Science(201508006)the China Earthquake Administration,Institute of Seismology Foundation(201326126)
文摘This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.
文摘According to the 3-D velocity images of the crust and upper mantle in Xinjiang and its adjacent areas and the projective distribution of epicenters at different depths, this paper reveals the relationship between the velocity structure feature of the crust and upper mantle and seismicity in the studied areas, and also reveals the deep seismogenic environment in the Tianshan earthquake belt, intermediate and deep focus earthquake region in Hindu Kush, intermediate earthquake belts (regions) in west Kunlun and Kalakorum Mountain and so on different earthquake belts. The seismogenesis is also discussed.
基金sponsored by the National Key Technology R&D Program (2008BAC38B04),China
文摘In accordance with the requirements of the National Key Technology R&D Program of the 11th "Five-year Plan", a densified seismic network consisting of 26 seismic stations was established at the Three Gorges Reservoir area in the section of Hubei Province in March 2009 (21 short-period seismographs, 5 broadband digital seismographs). From March to December, 2009, a total of 2,995 ML -0. 8 - 2. 9 earthquakes were detected during the trial impounding of the Three Gorges Reservoir ( water level rose from 145 m to 172.8m). Using the double difference earthquake location algorithm, 2,837 earthquakes were precisely re-located. The results show that the pattern of small local earthquake swarms in the Three Gorges Reservoir area took on a linear distribution or mass-like cluster distribution, the mass-like clusters of events were generally within a distance of 5 km from waterfront, and the linear distribution of the earthquakes could be extended to a distance of 16 km away from the waterfront. In the Hubei section of the Three Gorges Reservoir, earthquakes were mainly concentrated in the northern end of the Xiannvshan and Jiuwanxi faults near the Xiangxihe River, and along the banks of the Yangtze River at the west of Xietan township and the Shenlongxi area on the northern bank in the Badong region, with focal depths less than 10km, and 4km in average. Earthquake frequency in the reservoir region had a positive correlation with reservoir water level fluctuations, indicating that the seismicity belongs to reservoir induced earthquakes. Along the Shenlong River in the reservoir area, earthquakes showed three linear distributions in the northern Badong county, and distributed according to Karst distribution. There are underground rivers in the carbonate strata. When the reservoir was impounded, water permeated into the underground rivers, thus inducing earthquakes. Earthquakes in the areas on the crossriver segment of Xiannvshan fault, the Jiuwanxi fault and at the areas west of Xietan, Shazhen and Xizhen, may be related to the softening of discontinuities, such as the Nukou fault, the Xiannvshan fault, or the bedding joints, which would lead to failure of rock masses, thus, inducing earthquakes. However, convincing conclusions about the triggering mechanism still need further study. Additionally, near the areas south of Wenhua and Yanglin of Zigui county and at Rangkou town east of Badong county, mininginduced earthquakes occurred at the mines nearby, and on the shores of the reservoir are some collapse earthquakes.