Lithium-ion batteries(LIBs)are indispensable as global energy production transitions to sustainable production.Nevertheless,the use of LIBs in renewable energy storage applications is challenging due to their limited ...Lithium-ion batteries(LIBs)are indispensable as global energy production transitions to sustainable production.Nevertheless,the use of LIBs in renewable energy storage applications is challenging due to their limited power densities.To comprehend the origin of this limitation,it is crucial to investigate the effect of electrode architecture on the Liþion transport within their pores(solution-phase).In this work,the solution phase transport in various porous Li4Ti5O12(LTO)films was investigated using scanning ion conductance microscopy(SICM)and scanning electrochemical microscopy(SECM).When the porosity of LTO film increases,SECM and SICM approach curves show an increase in current.This is attributed to the ion transport through the film pores.The 2D topographical mapping using both techniques shows their ability to detect the LTO film's heterogeneity.Most importantly,this work gives insight into the complementary nature of the two scanning probe techniques as demonstrated by the comparable MacMullin numbers.展开更多
Here we report a novel generation/collection operation mode of scanning electrochemical microscopy,in which a theta micropipette was employed to support two adjacent water/1,2-dichloroethane interfaces separated by th...Here we report a novel generation/collection operation mode of scanning electrochemical microscopy,in which a theta micropipette was employed to support two adjacent water/1,2-dichloroethane interfaces separated by the thin central glass wall:one acts as the generator while the other as the collector.The generation current,collection current and collection efficiency were enhanced significantly when the tip approached to an insulate substrate.展开更多
s: Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detec...s: Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detection of enzyme activity immobilized on the membrane. Immobilized biomolecules on such membranes was combined with analysis apparatus and can be used in bioassays.展开更多
The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAM...The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.展开更多
The effect of grain orientation and grain boundary angle on the microscopic corrosion behavior of pure zinc was employed by the systematic integrated SECM, EBSD and AFM analysis. With confirmed different orientation g...The effect of grain orientation and grain boundary angle on the microscopic corrosion behavior of pure zinc was employed by the systematic integrated SECM, EBSD and AFM analysis. With confirmed different orientation grains, we proved the zinc grain near <0001>//ND orientation shows the lowest corrosion rate compared to that near <01■0>//ND and <■0>//ND orientation. Even though the grain orientation distribution is random and the grain corrosion rates of <01■0>//ND and <■0>//ND orientations are similar, the <0001>//ND have the lowest reactivity. The corrosion morphology of <0001>//ND orientation grain appears hexagonal corrosion pit,and the morphology of <01■0>//ND and <■0>//ND orientation grain shows striated structures. This behavior could be explained by the corrosion morphology and rate of zinc grain depending on the orientation.展开更多
Scanning probe is the key issue for the electrochemical scanning probe techniques(EC-SPM) such as EC-scanning tunnel microscopy(STM), EC-atomic force microscopy(AFM) and scanning electrochemical microscopy(SECM), espe...Scanning probe is the key issue for the electrochemical scanning probe techniques(EC-SPM) such as EC-scanning tunnel microscopy(STM), EC-atomic force microscopy(AFM) and scanning electrochemical microscopy(SECM), especially the insulative encapsulation of the nanoelectrode probe for both positioning and electrochemical feedbacks. To solve this problem,we develop a novel fabrication method of the gold nanoelectrodes: firstly, a micropipette with nanomter-sized orifice was prepared as the template by a laser puller; secondly, the inside wall of micropipette apex was blocked by compact and conic Au nano-piece through electroless plating; thirdly, the Au nano-piece was grown by bipolar electroplating and connected with a silver wire as a current collector. The fabricated Au nanoelectrode has very good voltammetric responses for the electrodic processes of both mass transfer and adsorption. The advantage lies in that it is well encapsulated by a thin glass sealing layer with a RG value lowered to 1.3, which makes it qualified in the SECM-STM coupling mode. On one hand, it can serve as STM tip for positioning which ensures the high spatial resolution; on the other hand, it is a high-quality nanoelectrode to explore the local chemical activity of the substrate. The nanofabrication method may promote the SPM techniques to obtain simultaneously the physical and chemical images with nanoscale spatial resolution, which opens a new approach to tip chemistry in electrochemical nanocatalysis and tip-enhanced spectroscopy.展开更多
The components of proton exchange membrane water electrolysers frequently experience corrosion issues, especially at high anodic polarization, that restrict the use of more affordable alternatives to titanium. Here, w...The components of proton exchange membrane water electrolysers frequently experience corrosion issues, especially at high anodic polarization, that restrict the use of more affordable alternatives to titanium. Here, we investigate localized corrosion processes of bare and Ti-coated AISI 446 ferritic stainless steel under anodic polarization by scanning electrochemical microscopy (SECM) in sodium sulphate and potassium chloride solutions. SECM approach curves and area scans measured at open-circuit potential (OCP) of the samples in the feedback mode using a redox mediator evidence a negative feedback effect caused by the surface passive film. For the anodic polarization of the sample, the substrate generation-tip collection mode enables to observe local generation of iron (II) ions, as well as formation of molecular oxygen. For the uncoated AISI 446 sample, localized corrosion is detected in sodium sulphate solution simultaneously with oxygen formation at anodic potentials of 1.0 V vs. Ag/AgCl, whereas significant pitting corrosion is observed even at 0.2 V vs. Ag/AgCl in potassium chloride solution. The Ti-coated AISI 446 sample reveals enhanced corrosion resistance in both test solutions, without any evidence of iron (II) ions generation at anodic potentials of 1.2 V vs. Ag/AgCl, where only oxygen formation is observed.展开更多
The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due t...The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due to so-called heterogeneous scavenging effect, while a lower etching rate will result in rather lower etching resolution. For the latter case, the confined etchant layer technique(CELT) has been employed to improve the etching resolution. i. e., a certain redox couple which can consume the etchant homogeneously and rapidly was added to the solution. The homogeneous scavenging effect confined the etchant within a narrow layer around the electrode surface and much improved etching resolution was achieved. Using the CELT and a needle-shaped microelectrode, an etching spot of several micro-meters was obtained at silicon wafer surface.展开更多
基金The financial support received from the Natural Sciences and Engineering Research Council(NSERC)for Grant No.RGPIN-2019-07200 is gratefully acknowledgedThe authors would like to acknowledge Prof.Janine Mauzeroll(McGill University)for providing the lab facilities for microelectrode preparation.
文摘Lithium-ion batteries(LIBs)are indispensable as global energy production transitions to sustainable production.Nevertheless,the use of LIBs in renewable energy storage applications is challenging due to their limited power densities.To comprehend the origin of this limitation,it is crucial to investigate the effect of electrode architecture on the Liþion transport within their pores(solution-phase).In this work,the solution phase transport in various porous Li4Ti5O12(LTO)films was investigated using scanning ion conductance microscopy(SICM)and scanning electrochemical microscopy(SECM).When the porosity of LTO film increases,SECM and SICM approach curves show an increase in current.This is attributed to the ion transport through the film pores.The 2D topographical mapping using both techniques shows their ability to detect the LTO film's heterogeneity.Most importantly,this work gives insight into the complementary nature of the two scanning probe techniques as demonstrated by the comparable MacMullin numbers.
文摘目的发展具有空间分辨的腐蚀电化学研究方法。方法用电沉积方法在铜基体上制备Ni和Ni-P涂层,应用扫描电镜和XRD检测涂层表面形貌和晶体结构,采用扫描电化学显微镜(SECM)研究Ni和Ni-P涂层在不同浓度Na Cl溶液中的失效行为,并结合COMSOL多物理场软件建立二维和三维模型,模拟量化活性点大小和反馈机制。结果低浓度Cl-对于纯Ni涂层具有活化作用,增加Cl-浓度会促进腐蚀发生。Ni-P合金涂层在低浓度Na Cl溶液中,短时间内保持良好的稳定性,浸泡6 h后,低P合金涂层出现典型的活性点和腐蚀产物,而高P合金涂层在浸泡24 h后出现腐蚀产物和活性区域。0.1 mol/L的Na Cl溶液促进低P合金涂层局部腐蚀的发生,而涂层在0.3 mol/L Na Cl溶液中则以发生均匀腐蚀为主。逼近曲线及其模拟结果表明,腐蚀产物对于Fc Me OH的电化学过程完全失活,而新鲜Cu表面对Fc Me OH氧化还原过程受扩散控制。三维模拟结果显示,低P合金涂层失效过程中活性点大小接近10μm。结论 Ni和Ni-P合金涂层的失效过程中活性点的形成、腐蚀产物的生成和累积过程与SECM面扫描图谱中正负反馈效应相关,Cl-促进腐蚀发生,其浓度影响腐蚀类型。COMSOL多物理场模拟明确反馈效应与探针和基底的距离有关,Ni-P涂层失效活性点大小在微米级。
基金supported by the National Natural Science Foundation of China(No.20973142)the NSFC Innovation Group of Interfacial Electrochemistry(No.21021002)National Project 985 of High Education,New Faculty Starting Package of Xiamen University
文摘Here we report a novel generation/collection operation mode of scanning electrochemical microscopy,in which a theta micropipette was employed to support two adjacent water/1,2-dichloroethane interfaces separated by the thin central glass wall:one acts as the generator while the other as the collector.The generation current,collection current and collection efficiency were enhanced significantly when the tip approached to an insulate substrate.
文摘s: Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detection of enzyme activity immobilized on the membrane. Immobilized biomolecules on such membranes was combined with analysis apparatus and can be used in bioassays.
基金the National Natural Science Foundation of China(No.20573069)for financial support of this research.
文摘The self-assembled monolayers (SAMs) of imidazoline (IM) on the iron surface were characterized by scanning electron microscope (SEM) and scanning electrochemical microscopy (SECM). The results showed that SAMs were an effective inhibition film for iron.
基金supported by the China Postdoctoral Science Foundation (2023MD744187)Guangxi Science and Technology Major Project (AA 23062036)+1 种基金Open Foundation of State Key Laboratory of Featured Metal Materials and Life–cycle Safety for Composite Structures(2022GXYSOF 12)Key Laboratory of High Performance Structural Materials and Thermo-surface Processing,Education Department of Guangxi Zhuang Autonomous Region
文摘The effect of grain orientation and grain boundary angle on the microscopic corrosion behavior of pure zinc was employed by the systematic integrated SECM, EBSD and AFM analysis. With confirmed different orientation grains, we proved the zinc grain near <0001>//ND orientation shows the lowest corrosion rate compared to that near <01■0>//ND and <■0>//ND orientation. Even though the grain orientation distribution is random and the grain corrosion rates of <01■0>//ND and <■0>//ND orientations are similar, the <0001>//ND have the lowest reactivity. The corrosion morphology of <0001>//ND orientation grain appears hexagonal corrosion pit,and the morphology of <01■0>//ND and <■0>//ND orientation grain shows striated structures. This behavior could be explained by the corrosion morphology and rate of zinc grain depending on the orientation.
基金Funding from the U.S.Army Research Laboratory under agreement No.W911NF-14–2–0005 with Dr.Joe Labukas as project manager supported co-author JMFFunding by the Office of Naval Research grant No.N000141210967 with Dr.David A.Shifler as scientific officer supported co-author LGBThe Bruker Dimension Icon AFM utilized in this work is located in the Boise State University Surface Science Laboratory(SSL),which is part of the FaCT Core Facility,RRID:SCR_024733,that receives support from the National Institutes of Health under the Institutional Development Awards Program of the National Institute of General Medical Sciences via grants#P20GM148321 and P20GM103408,the former of which also partially supports co-authors CME and PHD.
基金supported by the National Natural Science Founding of China(51205333,21273182,21327002,21321062,21061120456)
文摘Scanning probe is the key issue for the electrochemical scanning probe techniques(EC-SPM) such as EC-scanning tunnel microscopy(STM), EC-atomic force microscopy(AFM) and scanning electrochemical microscopy(SECM), especially the insulative encapsulation of the nanoelectrode probe for both positioning and electrochemical feedbacks. To solve this problem,we develop a novel fabrication method of the gold nanoelectrodes: firstly, a micropipette with nanomter-sized orifice was prepared as the template by a laser puller; secondly, the inside wall of micropipette apex was blocked by compact and conic Au nano-piece through electroless plating; thirdly, the Au nano-piece was grown by bipolar electroplating and connected with a silver wire as a current collector. The fabricated Au nanoelectrode has very good voltammetric responses for the electrodic processes of both mass transfer and adsorption. The advantage lies in that it is well encapsulated by a thin glass sealing layer with a RG value lowered to 1.3, which makes it qualified in the SECM-STM coupling mode. On one hand, it can serve as STM tip for positioning which ensures the high spatial resolution; on the other hand, it is a high-quality nanoelectrode to explore the local chemical activity of the substrate. The nanofabrication method may promote the SPM techniques to obtain simultaneously the physical and chemical images with nanoscale spatial resolution, which opens a new approach to tip chemistry in electrochemical nanocatalysis and tip-enhanced spectroscopy.
基金funding from the EEA Grants 2014-2021,under Project contract No.2/2019 CoDe-PEM(EEA RO-NO-2018-0502).
文摘The components of proton exchange membrane water electrolysers frequently experience corrosion issues, especially at high anodic polarization, that restrict the use of more affordable alternatives to titanium. Here, we investigate localized corrosion processes of bare and Ti-coated AISI 446 ferritic stainless steel under anodic polarization by scanning electrochemical microscopy (SECM) in sodium sulphate and potassium chloride solutions. SECM approach curves and area scans measured at open-circuit potential (OCP) of the samples in the feedback mode using a redox mediator evidence a negative feedback effect caused by the surface passive film. For the anodic polarization of the sample, the substrate generation-tip collection mode enables to observe local generation of iron (II) ions, as well as formation of molecular oxygen. For the uncoated AISI 446 sample, localized corrosion is detected in sodium sulphate solution simultaneously with oxygen formation at anodic potentials of 1.0 V vs. Ag/AgCl, whereas significant pitting corrosion is observed even at 0.2 V vs. Ag/AgCl in potassium chloride solution. The Ti-coated AISI 446 sample reveals enhanced corrosion resistance in both test solutions, without any evidence of iron (II) ions generation at anodic potentials of 1.2 V vs. Ag/AgCl, where only oxygen formation is observed.
文摘The etching resolution of electrochemical fabrication technique is influenced significantly by the diffusion layer of the etchant. It has been shown that a fast etching rate can achieve higher etching resolution due to so-called heterogeneous scavenging effect, while a lower etching rate will result in rather lower etching resolution. For the latter case, the confined etchant layer technique(CELT) has been employed to improve the etching resolution. i. e., a certain redox couple which can consume the etchant homogeneously and rapidly was added to the solution. The homogeneous scavenging effect confined the etchant within a narrow layer around the electrode surface and much improved etching resolution was achieved. Using the CELT and a needle-shaped microelectrode, an etching spot of several micro-meters was obtained at silicon wafer surface.