Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction...Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.展开更多
Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-...Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-scale preparation of the“integrated”phosphorus-based precatalyst(FeP-NiP)on nickel foam(NF),which is in situ reconstructed into a highly active and corrosion-resistant(Fe)NiOOH phase for OER.The interaction between phosphate anions(PO_(x)^(y-))and iron ions(Fe^(3+))tunes the electronic structure of the catalytic phase to further enhance OER kinetics.The integrated FeP-NiP@NF electrode exhibits low overpotentials for OER in alkaline water/seawater,requiring only 275/289,320/336,and 349/358 mV to reach 0.1,0.5,and 1.0 A cm^(−2),respectively.The in situ reconstructed PO_(x)^(y-)anion electrostatically repels Cl−in seawater electrolytes,allowing stable operation for over 7 days at 1.0 A cm^(−2) in extreme electrolytes(1.0 M KOH+seawater and 6.0 M KOH+seawater),demonstrating industrial-level stability.This study overcomes the complex synthesis limitations of P-based materials through innovative material design,opening new avenues for electrochemical energy conversion.展开更多
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
Hydrogen is widely regarded as a crucial energy carrier for achieving carbon neutrality and a sustainable future.Direct seawater electrolysis using renewable energy presents a promising approach for large-scale hydrog...Hydrogen is widely regarded as a crucial energy carrier for achieving carbon neutrality and a sustainable future.Direct seawater electrolysis using renewable energy presents a promising approach for large-scale hydrogen production.Reactions of this nature at high current density and Faradaic efficiency are hampered by two challenges.展开更多
Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to c...Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.展开更多
Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system compl...Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.展开更多
A pyrimidine derivative,6-phenyl-2-thiouracil(PT),was synthesized for developing a corrosion inhibitor(CI)applied in the protection of the nickel−aluminum bronze(NAB)in seawater.The anti-corrosion effect of PT was eva...A pyrimidine derivative,6-phenyl-2-thiouracil(PT),was synthesized for developing a corrosion inhibitor(CI)applied in the protection of the nickel−aluminum bronze(NAB)in seawater.The anti-corrosion effect of PT was evaluated by the mass loss experiment,electrochemical tests and surface analysis.The results show that PT exhibits excellent inhibition performance and the maximum inhibition efficiency of PT reaches 99.6%.The interaction mechanism was investigated through X-ray photoelectron spectroscopy(XPS)and molecule dynamics simulation based on the density functional theory(DFT).The S-Cu,Al-N and Cu-N bonds are formed by the chemical interactions,leading to the adsorption of PT on the NAB surface.The diffusion of corrosive species is hindered considerably by the protective PT film with composition of(PT-Cu)_(ads)and(PT-Al)_(ads)on the PT/NAB interface.The degree of suppression is increased with the addition of more PT molecules.展开更多
Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically slug...Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.展开更多
Thermoelectric water spitting to hydrogen systems has great potential in the production of environment-friendly fuel using renewable solar energy in the future.In this work,we prepared porous nanosheet Mo doping Ni_(5...Thermoelectric water spitting to hydrogen systems has great potential in the production of environment-friendly fuel using renewable solar energy in the future.In this work,we prepared porous nanosheet Mo doping Ni_(5)P_(4)catalysts on nickel foam with efficient hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)performance in alkaline media.Density Functional Theory(DFT)calculations and experimental studies have shown that Mo doping deadeneds the interaction between H and O atomic orbitals of transition state water molecules,effectively weakening the activation energy of H_(2)O dissociation.Therefore,Mo doping is favorable for enhancing HER activity with overpotential at 10 mA cm^(-2)of 93 mV and Tafel slope of 40.1 mV dec^(-1)in 1 M KOH.Besides,it exhibits high alkaline OER activity with an ultra-low overpotential of 200 mV at 10 mA cm^(-2).Moreover,this catalyst only needs 1.537 V in a dual-electrode configuration of the electrolytic cell,which is much lower than the commercial Pt/C-RuO_(2)couple(1.614 V).In addition,we have developed and constructed a solar thermoelectric generator(TEG)that is capable of floating on water.This TEG has a continuous power output and an exceptionally long lifespan,providing a stable power supply to the synthesized catalyst electrolyzer.It can produce a maximum power output of over 90 mW,meeting the requirement of converting solar radiation heat into usable electricity.As a result,the system achieves productivity of 0.11 mL min^(-1)H_(2).This solar thermal energy conversion technology shows the possibility of large-scale industrial production of H_(2)and provides a new idea for exploring heat source utilization.展开更多
This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensi...This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensive multiphysics simulations guided by field data from hydrate production tests in the South China Sea,we pinpoint key operational parameters—such as injection rates,depths,and timings—that notably enhance production efficiency.The results indicate that a 3-phase hydrate reservoir transitions from a free-gas-dominated production stage to a hydrate-decomposition-dominated stage.Moderate warm seawater injection supplies additional heat during the hydrate decomposition phase,thereby enhancing stable production;however,excessively high injection rates can impede the depressurization process.Only injection at an appropriate depth simultaneously balances thermal supplementation and the pressure gradient,leading to higher overall productivity.A“depressurization-driven sensible-heat supply window”is introduced,highlighting that timely seawater injection following initial depressurization prolongs reservoir dissociation dynamics.In this study area,commencing seawater injection at 170 d of depressurization proved optimal.This optimized integration leverages clean and renewable thermal energy,providing essential insights into thermal supplementation strategies with significant implications for sustainable,economically feasible,and efficient commercial-scale hydrate production.展开更多
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei...Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.展开更多
Paste and mortar specimens were prepared with sulfoaluminate cement(SAC),P⋅O 42.5 ordinary Portland cement(OPC),and standard sand,and mixed and cured with pure water and artificial seawater,respectively.The mechanical...Paste and mortar specimens were prepared with sulfoaluminate cement(SAC),P⋅O 42.5 ordinary Portland cement(OPC),and standard sand,and mixed and cured with pure water and artificial seawater,respectively.The mechanical properties of mortar specimens were tested.Hydration and microstructure of paste specimens were also investigated using X-ray diffraction(XRD),scanning electron microscope(SEM),and 27Al nuclear magnetic resonance(NMR),respectively.The results indicate that SAC mortar samples mixed and cured by seawater have faster strength growth before 28 d and higher compressive strength than OPC mortar samples.Compared to curing in deionized water,the hydration products of SAC are somewhat coarser when cured in simulated seawater.The evolution of aluminum phase hydration products during the hydration process of SAC mixed and cured in simulated seawater is quite different from that of OPC.From 3 to 28 d,the content of each aluminum phase hydration product in SAC paste cured in simulated seawater changed little,while that in OPC paste changed significantly;for example,from 7 to 28 d,the content of ettringite(AFt)in OPC paste increased significantly.This type of AFt formed loosely,harming the mortar's microstructure.展开更多
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c...Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.展开更多
Understanding the catalytic mechanism at real catalytically active layer is essential for the advancement of water oxidation.Nevertheless,it is difficult to explore the surface effect of active layer of catalysts on o...Understanding the catalytic mechanism at real catalytically active layer is essential for the advancement of water oxidation.Nevertheless,it is difficult to explore the surface effect of active layer of catalysts on oxygen evolution reaction(OER)independently because of the coexistence of bulk phase and surfaceactive layer.Herein,by designing ultra-thin shell amorphous CoO_(x)hollow nanospheres,we explored the effect of single catalytic active layer on OER activity,further revealing the surface catalytic mechanism for seawater oxidation.The amorphous catalytic active layer CoO_(x)contain phosphates(CoO_(x)PO_(4)),induced by completely bulk reconstruction of CoP_(x)hollow nanospheres.Compared with autologous crystalline CoO,amorphous catalytic active species CoO_(x)-PO_(4)possesses higher OER performance with ultralow overpotential of 229 mV to achieve 10 mA cm^(-2).Remarkably,self-built phosphate film could effectively block chloride anions and implement robust seawater oxidation.This work brings direct insights of the surface effect of amorphous catalytic active layer on water oxidation,which is critical for the performance optimization of water oxidation.展开更多
The enhancement of chalcopyrite bioleaching with an enriched microbial community by acidified seawater was studied,and the enhancing mechanism was analyzed.The microbial community was enriched at the Dabaoshan mine si...The enhancement of chalcopyrite bioleaching with an enriched microbial community by acidified seawater was studied,and the enhancing mechanism was analyzed.The microbial community was enriched at the Dabaoshan mine site,and the treated ore sample had high concentrations of chalcopyrite and galena.The experimental results show that copper extraction from chalcopyrite with an enriched microbial community in seawater was promoted from 13.1%to 62.1%by acidification in comparison with that without acidification.Further analyses of the solutions,solid residues and microbial compositions by scanning electron microscopy,X-ray diffraction,Raman spectroscopy,Fourier transform infrared spectroscopy and 16 S rDNA sequencing revealed the promoting effects of acidified seawater.This acidification can increase the biodissolution of chalcopyrite to increase the concentration of iron ions and maintain the redox potential in the range of 360−410 mV.The latter produces an optimal redox environment conducive to chalcopyrite dissolution via Cu_(2)S.The adaptability of the microbial community to a high-salt environment is improved.Chloride ions at 580 mmol/L improve the leaching kinetics of chalcopyrite by increasing the porosity and noncrystallinity of the intermediate elemental sulfur.This study provides a promising way to bioleaching copper minerals using seawater for areas with freshwater shortages.展开更多
In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of micropla...In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of microplastics in surface and bottom waters was 1.35±0.93 and 0.79±0.50 items/m~3,respectively.Microplastics in both surface and bottom waters were predominantly in the form of fragments,and mostly in green.The composition of microplastics in surface water was primarily poly(methyl methacrylate)(PMA),whereas in bottom water,polyethylene(PE)dominated.Positive matrix factorization(PMF)modeling revealed that the primary sources of microplastics were pipeline abrasion,fishing activities,plastic waste,landfill disposal,transportation,aquaculture,and construction activities.The pollution load index(PLI)indicated that the overall risk of microplastic pollution in the Beibu Gulf was low.Conversely,the polymer hazard index(PHI)for microplastics was relatively high.These data underscore the importance of timely and effective reduction of human-intensive activities contributing to microplastic pollution and provide valuable information for further research in microplastic ecotoxicology and biogeochemistry.展开更多
Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chlori...Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chloride oxidation reactions make oxygen evolution reaction(OER)in seawater extremely challenging.Herein,the low-cost and scalable CoFe layered double hydroxides with Cl^(-)intercalation and decorated with Ce(OH)_(3)(named as CoFe-Cl^(-)/Ce(OH)_(3))catalyst is synthesized via rapid electrodeposition under ambient conditions,which is quickly reconstructed into a CeO_(2)decorated and Cl^(-)intercalated CoFeOOH(CoFeOOH-Cl^(-)/CeO_(2))during OER.Theoretical investigation reveals that Cl^(-)intercalation weakens the adsorption ability of Cl^(-)on Co/Fe atoms and hinders unfavorable coupling with chloride,thereby preventing the chlorine corrosion process and enhancing catalytic stability and activity.The CeO_(2)with hard Lewis acidity preferentially binds to OH-with harder Lewis base to ensure the OH-rich microenvironment around catalyst even under high current operating conditions,thus further enhancing stability and improving OER activity.The functionalized CoFe-Cl^(-)/Ce(OH)_(3)delivers 1000 mA cm^(-2)current density at only 329 mV overpotential with excellent stability for 1000 h under alkaline seawater.Electrochemical experiments elucidate the OER catalytic mechanism in which CeO_(2)serves as a co-catalyst for enriching OH-and CoFeOOH-Cl^(-)is the active species.Our work is a substantial step towards achieving massive and sustainable production of hydrogen fuel from immense seawater.展开更多
Hydrogen production via seawater electrolysis,leveraging sustainable energy sources such as offshore wind or solar energy,has immense application potential.However,the abundance of chloride ions(Cl^(-))in seawater lea...Hydrogen production via seawater electrolysis,leveraging sustainable energy sources such as offshore wind or solar energy,has immense application potential.However,the abundance of chloride ions(Cl^(-))in seawater leads to the generation of chlorine gas and hypochlorite at the anode during electrolysis,pos-ing a severe threat of corrosion of the catalyst and electrolytic equipment.Herein,we synthesize a NiMo-based catalyst adorned with surface-anchored graphene quantum dots(GQDs).This catalyst possesses ex-cellent Cl^(-)exclusion capabilities.The Mo-NiS/Se@GQDs core-shell nanorod catalyst requires only 170 mV of overpotential to attain a current density of 10 mA cm^(-2) and operates stably for 200 h without degra-dation across a broad current density range from 100 to 400 mA cm^(-2).This remarkable electrocatalytic stability arises from the dynamic and efficient repulsion of Cl^(-)at the catalytic interface,as proven by the post-reaction analysis of Cl^(-)distribution within the catalyst.Furthermore,a potentiodynamic polarization test revealed that the Mo-NiS/Se@GQDs catalyst has high corrosion potential(0.66 V)and low corrosion current density(122.93μA cm^(-2)),underscoring its excellent corrosion resistance.This research presents a novel approach to mitigate Cl^(-)corrosion during hydrogen production through seawater electrolysis,laying a solid foundation for advancing sustainable energy conversion technologies.展开更多
[Objectives]To assess the carbon sink capacity in seawater suspension cage aquaculture of shellfish in Tianjin from 2015 to 2022.[Methods]The carbon sink capacity of different shellfish species was evaluated using bot...[Objectives]To assess the carbon sink capacity in seawater suspension cage aquaculture of shellfish in Tianjin from 2015 to 2022.[Methods]The carbon sink capacity of different shellfish species was evaluated using both physical and value assessment methods.[Results]The shellfish cultivated in seawater suspension cages in Tianjin exhibited a significant capacity for carbon sinks.The amounts of carbon removed by suspension cage aquaculture of Rapana venosa,Crassostrea gigas,Scapharca subcrenata,Scapharca broughtonii and Argopectens irradias were 448.297,403.398,89.463,40.657,and 106.719 t,respectively.Furthermore,the total volume of shellfish cultivated in seawater exhibited a consistent upward trend over time,correlating with an annual increase in the amount of carbon removed.Among the shellfish cultivated in seawater suspension cages,the order of carbon sink capacity was as follows:C.gigas>R.venosa>A.irradias>S.subcrenata and S.broughtonii.In terms of the carbon sink capacity of soft tissues,the ranking was as follows:A.irradias>R.venosa>C.gigas>S.subcrenata and S.broughtonii.The structural and yield factors associated with seawater suspension cage aquaculture of shellfish significantly influenced the enhancement of the total carbon sink of cultivated shellfish.Notably,structural factors had a greater impact on the increase in the carbon sink of cultivated shellfish compared to total yield factors.[Conclusions]The findings will serve as a reference for enhancing the carbon sink potential of fisheries and achieving sustainable development in seawater aquaculture in Tianjin.展开更多
Direct seawater electrolysis is a promising way for hydrogen energy production.However,developing efficient and cost-effective electrocatalysts remains a significant challenge for seawater electrolysis with industrial...Direct seawater electrolysis is a promising way for hydrogen energy production.However,developing efficient and cost-effective electrocatalysts remains a significant challenge for seawater electrolysis with industrial-level current density due to high concentration of salts and compete reaction of chlorine evolution.Herein,a 1D NiFe_(2)O_(4)/NiMoO_(4) heterostructure as a bifunctional electrocatalyst for overall seawater splitting is constructed by combining NiMoO_(4) nanowires with NiFe_(2)O_(4)nanoparticles on carbon felt(CF)by a simple hydrothermal,impregnation and calcination method.The electrocatalyst exhibits low overpotential of 237 and 292 mV for oxygen evolution reaction and hydrogen evolution reaction at 400 m A/cm^(2)in the alkaline seawater(1 mol/L KOH+0.5 mol/L NaCl)due to the plentiful interfaces of NiFe_(2)O_(4)/NiMoO_4 which exposes more active sites and expands the active surface area,thereby enhancing its intrinsic activity and promoting the reaction kinetics.Notably,it displays low voltages of 1.95 V to drive current density of 400 m A/cm^(2)in alkaline seawater with its excellent stability of 200 h at above 100 m A/cm^(2),exhibiting outstanding performance and good corrosion resistance.This work provides an effective strategy for constructing efficient and cost-effective electrocatalysts for industrial seawater electrolysis,underscoring its potential for sustainable energy applications.展开更多
基金funded by the Innovative Research Group Project of the National Natural Science Foundation of China(52121004)the Research Development Fund(No.RDF-21-02-060)by Xi’an Jiaotong-Liverpool University+1 种基金support received from the Suzhou Industrial Park High Quality Innovation Platform of Functional Molecular Materials and Devices(YZCXPT2023105)the XJTLU Advanced Materials Research Center(AMRC).
文摘Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.
基金funding support from Natural Science Foundation of Shanghai(Grant No.23ZR1443900)the National Natural Science Foundation of China(Grant Nos.22178309,22476131 and 22176127)。
文摘Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-scale preparation of the“integrated”phosphorus-based precatalyst(FeP-NiP)on nickel foam(NF),which is in situ reconstructed into a highly active and corrosion-resistant(Fe)NiOOH phase for OER.The interaction between phosphate anions(PO_(x)^(y-))and iron ions(Fe^(3+))tunes the electronic structure of the catalytic phase to further enhance OER kinetics.The integrated FeP-NiP@NF electrode exhibits low overpotentials for OER in alkaline water/seawater,requiring only 275/289,320/336,and 349/358 mV to reach 0.1,0.5,and 1.0 A cm^(−2),respectively.The in situ reconstructed PO_(x)^(y-)anion electrostatically repels Cl−in seawater electrolytes,allowing stable operation for over 7 days at 1.0 A cm^(−2) in extreme electrolytes(1.0 M KOH+seawater and 6.0 M KOH+seawater),demonstrating industrial-level stability.This study overcomes the complex synthesis limitations of P-based materials through innovative material design,opening new avenues for electrochemical energy conversion.
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
文摘Hydrogen is widely regarded as a crucial energy carrier for achieving carbon neutrality and a sustainable future.Direct seawater electrolysis using renewable energy presents a promising approach for large-scale hydrogen production.Reactions of this nature at high current density and Faradaic efficiency are hampered by two challenges.
基金funding provided by the National Key R&D Program of China (Grant No. 2021YFB3801301)National Natural Science Foundation of China (Grant Nos. 22075076, 22208097 and 22378119)Shanghai Pilot Program for Basic Research (22TQ1400100-4)。
文摘Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.
基金supported by the National Natural Science Foundation of China(Nos.22208376,UA22A20429)Shandong Provincial Natural Science Foundation(Nos.ZR2024QB175,ZR2023LFG005)+1 种基金Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)Ministry of Education University-Industry Collaborative Education Program(No.230804132140429).
文摘Seawater electrolysis offers a promising pathway to generate green hydrogen,which is crucial for the net-zero emission targets.Indirect seawater electrolysis is severely limited by high energy demands and system complexity,while the direct seawater electrolysis bypasses pre-treatment,offering a simpler and more cost-effective solution.However,the chlorine evolution reaction and impurities in the seawater lead to severe corrosion and hinder electrolysis’s efficiency.Herein,we review recent advances in the rational design of chlorine-suppressive catalysts and integrated electrolysis systems architectures for chloride-induced corrosion,with simultaneous enhancement of Faradaic efficiency and reduction of electrolysis’s cost.Furthermore,promising directions are proposed for durable and efficient seawater electrolysis systems.This review provides perspectives for seawater electrolysis toward sustainable energy conversion and environmental protection.
基金supported by the National Natural Science Foundation of China(No.52171069).
文摘A pyrimidine derivative,6-phenyl-2-thiouracil(PT),was synthesized for developing a corrosion inhibitor(CI)applied in the protection of the nickel−aluminum bronze(NAB)in seawater.The anti-corrosion effect of PT was evaluated by the mass loss experiment,electrochemical tests and surface analysis.The results show that PT exhibits excellent inhibition performance and the maximum inhibition efficiency of PT reaches 99.6%.The interaction mechanism was investigated through X-ray photoelectron spectroscopy(XPS)and molecule dynamics simulation based on the density functional theory(DFT).The S-Cu,Al-N and Cu-N bonds are formed by the chemical interactions,leading to the adsorption of PT on the NAB surface.The diffusion of corrosive species is hindered considerably by the protective PT film with composition of(PT-Cu)_(ads)and(PT-Al)_(ads)on the PT/NAB interface.The degree of suppression is increased with the addition of more PT molecules.
基金financially supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)the Natural Science Foundation of Jilin Province of China(No.20240101098JC)the National Natural Science Foundation of China(No.22469002)。
文摘Establishing an energy-saving and affordable hydrogen production route from infinite seawater presents a promising strategy for achieving carbon neutrality and low-carbon development.Compared with the kinetically sluggish oxygen evolution reaction(OER),the thermodynamically advantageous sulfion oxidation reaction(SOR)enables the S^(2-)pollutants recovery while reducing the energy input of water electrolysis.Here,a nanoporous NiMo alloy ligament(np-NiMo)with AlNi_(3)/Al_(5)Mo heterostructure was prepared for hydrogen evolution reaction(HER,-0.134V versus reversible hydrogen electrode(vs.RHE)at 50mA/cm^(2)),which needs an Al_(89)Ni_(10)Mo_(1)as a precursor and dealloying operation.Further,the np-NiMo alloy was thermal-treated with S powder to generate Mo-doped NiS_(2)(np-NiMo-S)for OER(1.544V vs.RHE at 50mA/cm^(2))and SOR(0.364 V vs.RHE at 50mA/cm^(2)),while still maintaining the nanostructuring advantages.Moreover,for a two-electrode electrolyzer system with np-NiMo cathode(1M KOH+seawater)coupling np-NiMo-S anode(1mol/L KOH+seawater+1 mol/L Na_(2)S),a remarkably ultra-low cell potential of 0.532 V is acquired at 50mA/cm^(2),which is about 1.015 V below that of normal alkaline seawater splitting.The theory calculations confirmed that the AlNi_(3)/Al_(5)Mo heterostructure within np-NiMo promotes H_(2)O dissociation for excellent HER,while the Mo-dopant of np-NiMo-S lowers energy barriers for the rate-determining step from^(*)S_(4)to^(*)S_(8).This work develops two kinds of NiMo alloy with tremendous prominence for achieving energy-efficient hydrogen production from alkaline seawater and sulfur recycling from sulfion-rich sewage.
基金supported by the Hainan Provincial Natural Science Foundation of China(Nos.522MS038 and 522QN282)the National Natural Science Foundation of China(Nos.52172086 and 52301268)the Start-up Research Foundation of Hainan University(No.KYQD(ZR)-22019).
文摘Thermoelectric water spitting to hydrogen systems has great potential in the production of environment-friendly fuel using renewable solar energy in the future.In this work,we prepared porous nanosheet Mo doping Ni_(5)P_(4)catalysts on nickel foam with efficient hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)performance in alkaline media.Density Functional Theory(DFT)calculations and experimental studies have shown that Mo doping deadeneds the interaction between H and O atomic orbitals of transition state water molecules,effectively weakening the activation energy of H_(2)O dissociation.Therefore,Mo doping is favorable for enhancing HER activity with overpotential at 10 mA cm^(-2)of 93 mV and Tafel slope of 40.1 mV dec^(-1)in 1 M KOH.Besides,it exhibits high alkaline OER activity with an ultra-low overpotential of 200 mV at 10 mA cm^(-2).Moreover,this catalyst only needs 1.537 V in a dual-electrode configuration of the electrolytic cell,which is much lower than the commercial Pt/C-RuO_(2)couple(1.614 V).In addition,we have developed and constructed a solar thermoelectric generator(TEG)that is capable of floating on water.This TEG has a continuous power output and an exceptionally long lifespan,providing a stable power supply to the synthesized catalyst electrolyzer.It can produce a maximum power output of over 90 mW,meeting the requirement of converting solar radiation heat into usable electricity.As a result,the system achieves productivity of 0.11 mL min^(-1)H_(2).This solar thermal energy conversion technology shows the possibility of large-scale industrial production of H_(2)and provides a new idea for exploring heat source utilization.
基金supported by the National Key R&D Program of China(No.2024YFB4206700)the Joint Geological Funds of the National Natural Science Foundation of China(No.U2244223)+5 种基金the China Scholarship Council Program(No.202404910533)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003)the China Geological Survey Project(No.DD20211350)the Key Deployment Program of Chinese Academy of Sciences(Nos.YJKYYQ20190043,ZDBS-LY-DQC003,KFZD-SW-422,and ZDRW-ZS-2021-3-1)the Scientific Research and Technology Development Project of China National Petroleum Corporation(No.2022DJ5503)the Supercomputing Laboratory,IGGCAS.
文摘This study proposes and systematically evaluates an optimized integration of warm surface seawater injection with depressurization for the long-term exploitation of marine natural gas hydrates.By employing comprehensive multiphysics simulations guided by field data from hydrate production tests in the South China Sea,we pinpoint key operational parameters—such as injection rates,depths,and timings—that notably enhance production efficiency.The results indicate that a 3-phase hydrate reservoir transitions from a free-gas-dominated production stage to a hydrate-decomposition-dominated stage.Moderate warm seawater injection supplies additional heat during the hydrate decomposition phase,thereby enhancing stable production;however,excessively high injection rates can impede the depressurization process.Only injection at an appropriate depth simultaneously balances thermal supplementation and the pressure gradient,leading to higher overall productivity.A“depressurization-driven sensible-heat supply window”is introduced,highlighting that timely seawater injection following initial depressurization prolongs reservoir dissociation dynamics.In this study area,commencing seawater injection at 170 d of depressurization proved optimal.This optimized integration leverages clean and renewable thermal energy,providing essential insights into thermal supplementation strategies with significant implications for sustainable,economically feasible,and efficient commercial-scale hydrate production.
基金Financial support from the National Natural Science Foundation of China(51972016)the Fundamental Research Funds for the Central Universities(JD2417)is gratefully acknowledged.
文摘Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
基金Funded by Science and Technology Development Project of China Railway Design Corporation(Nos.2023A0226407,2023B03040003)。
文摘Paste and mortar specimens were prepared with sulfoaluminate cement(SAC),P⋅O 42.5 ordinary Portland cement(OPC),and standard sand,and mixed and cured with pure water and artificial seawater,respectively.The mechanical properties of mortar specimens were tested.Hydration and microstructure of paste specimens were also investigated using X-ray diffraction(XRD),scanning electron microscope(SEM),and 27Al nuclear magnetic resonance(NMR),respectively.The results indicate that SAC mortar samples mixed and cured by seawater have faster strength growth before 28 d and higher compressive strength than OPC mortar samples.Compared to curing in deionized water,the hydration products of SAC are somewhat coarser when cured in simulated seawater.The evolution of aluminum phase hydration products during the hydration process of SAC mixed and cured in simulated seawater is quite different from that of OPC.From 3 to 28 d,the content of each aluminum phase hydration product in SAC paste cured in simulated seawater changed little,while that in OPC paste changed significantly;for example,from 7 to 28 d,the content of ettringite(AFt)in OPC paste increased significantly.This type of AFt formed loosely,harming the mortar's microstructure.
基金supported by the National Natural Science Foundation of China(52164028,52274297)the Start-up Research Foundation of Hainan University(KYQD(ZR)20008,KYQD(ZR)21125,KYQD(ZR)23169))+1 种基金Collaborative Innovation Center of Marine Science and Technology of Hainan University(XTCX2022HYC14)Innovative Research Project for Postgraduate Students in Hainan Province(Qhyb2024-95).
文摘Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.
基金support from the Starting Research Funds of Hebei University of Science and Technology,the National Natural Science Foundation of China(22109038)the Hebei Natural Science Foundation(D2022208001)the S&T Program of Hebei(21344601D,242G4601Z)。
文摘Understanding the catalytic mechanism at real catalytically active layer is essential for the advancement of water oxidation.Nevertheless,it is difficult to explore the surface effect of active layer of catalysts on oxygen evolution reaction(OER)independently because of the coexistence of bulk phase and surfaceactive layer.Herein,by designing ultra-thin shell amorphous CoO_(x)hollow nanospheres,we explored the effect of single catalytic active layer on OER activity,further revealing the surface catalytic mechanism for seawater oxidation.The amorphous catalytic active layer CoO_(x)contain phosphates(CoO_(x)PO_(4)),induced by completely bulk reconstruction of CoP_(x)hollow nanospheres.Compared with autologous crystalline CoO,amorphous catalytic active species CoO_(x)-PO_(4)possesses higher OER performance with ultralow overpotential of 229 mV to achieve 10 mA cm^(-2).Remarkably,self-built phosphate film could effectively block chloride anions and implement robust seawater oxidation.This work brings direct insights of the surface effect of amorphous catalytic active layer on water oxidation,which is critical for the performance optimization of water oxidation.
基金Project(2022YFC2105300)supported by the National Key Research and Development Program of ChinaProjects(41802038,51774342)supported by the National Natural Science Foundation of China。
文摘The enhancement of chalcopyrite bioleaching with an enriched microbial community by acidified seawater was studied,and the enhancing mechanism was analyzed.The microbial community was enriched at the Dabaoshan mine site,and the treated ore sample had high concentrations of chalcopyrite and galena.The experimental results show that copper extraction from chalcopyrite with an enriched microbial community in seawater was promoted from 13.1%to 62.1%by acidification in comparison with that without acidification.Further analyses of the solutions,solid residues and microbial compositions by scanning electron microscopy,X-ray diffraction,Raman spectroscopy,Fourier transform infrared spectroscopy and 16 S rDNA sequencing revealed the promoting effects of acidified seawater.This acidification can increase the biodissolution of chalcopyrite to increase the concentration of iron ions and maintain the redox potential in the range of 360−410 mV.The latter produces an optimal redox environment conducive to chalcopyrite dissolution via Cu_(2)S.The adaptability of the microbial community to a high-salt environment is improved.Chloride ions at 580 mmol/L improve the leaching kinetics of chalcopyrite by increasing the porosity and noncrystallinity of the intermediate elemental sulfur.This study provides a promising way to bioleaching copper minerals using seawater for areas with freshwater shortages.
基金Supported by the National Natural Science Foundation of China(No.U20A20103)the Scientific Research Fund of the Fourth Institute of Oceanography+1 种基金Guangxi Funding Project(No.304024XM20N0006)the Guangxi Talent Science and Technology Project(No.2019AC17008)。
文摘In this study,the occurrence,sources,and ecological risk of microplastics(>60μm)in the surface and bottom seawater were investigated in the Beibu Gulf,the northern South China Sea.The average abundance of microplastics in surface and bottom waters was 1.35±0.93 and 0.79±0.50 items/m~3,respectively.Microplastics in both surface and bottom waters were predominantly in the form of fragments,and mostly in green.The composition of microplastics in surface water was primarily poly(methyl methacrylate)(PMA),whereas in bottom water,polyethylene(PE)dominated.Positive matrix factorization(PMF)modeling revealed that the primary sources of microplastics were pipeline abrasion,fishing activities,plastic waste,landfill disposal,transportation,aquaculture,and construction activities.The pollution load index(PLI)indicated that the overall risk of microplastic pollution in the Beibu Gulf was low.Conversely,the polymer hazard index(PHI)for microplastics was relatively high.These data underscore the importance of timely and effective reduction of human-intensive activities contributing to microplastic pollution and provide valuable information for further research in microplastic ecotoxicology and biogeochemistry.
基金financial support from the National Natural Science Foundation of China(52372173,52072034)。
文摘Direct electrolysis of seawater offers a transformative technology for sustainable hydrogen production,circumventing the constraint of freshwater scarcity.However,the serious electrode corrosion and competitive chloride oxidation reactions make oxygen evolution reaction(OER)in seawater extremely challenging.Herein,the low-cost and scalable CoFe layered double hydroxides with Cl^(-)intercalation and decorated with Ce(OH)_(3)(named as CoFe-Cl^(-)/Ce(OH)_(3))catalyst is synthesized via rapid electrodeposition under ambient conditions,which is quickly reconstructed into a CeO_(2)decorated and Cl^(-)intercalated CoFeOOH(CoFeOOH-Cl^(-)/CeO_(2))during OER.Theoretical investigation reveals that Cl^(-)intercalation weakens the adsorption ability of Cl^(-)on Co/Fe atoms and hinders unfavorable coupling with chloride,thereby preventing the chlorine corrosion process and enhancing catalytic stability and activity.The CeO_(2)with hard Lewis acidity preferentially binds to OH-with harder Lewis base to ensure the OH-rich microenvironment around catalyst even under high current operating conditions,thus further enhancing stability and improving OER activity.The functionalized CoFe-Cl^(-)/Ce(OH)_(3)delivers 1000 mA cm^(-2)current density at only 329 mV overpotential with excellent stability for 1000 h under alkaline seawater.Electrochemical experiments elucidate the OER catalytic mechanism in which CeO_(2)serves as a co-catalyst for enriching OH-and CoFeOOH-Cl^(-)is the active species.Our work is a substantial step towards achieving massive and sustainable production of hydrogen fuel from immense seawater.
基金financially supported by the National Natural Science Foundation of China(Nos.22103045 and 52273077)the State Key Laboratory of Bio-Fibers and Eco-Textiles,Qingdao University(Nos.ZDKT202108,RZ2000003334,and G2RC202022).
文摘Hydrogen production via seawater electrolysis,leveraging sustainable energy sources such as offshore wind or solar energy,has immense application potential.However,the abundance of chloride ions(Cl^(-))in seawater leads to the generation of chlorine gas and hypochlorite at the anode during electrolysis,pos-ing a severe threat of corrosion of the catalyst and electrolytic equipment.Herein,we synthesize a NiMo-based catalyst adorned with surface-anchored graphene quantum dots(GQDs).This catalyst possesses ex-cellent Cl^(-)exclusion capabilities.The Mo-NiS/Se@GQDs core-shell nanorod catalyst requires only 170 mV of overpotential to attain a current density of 10 mA cm^(-2) and operates stably for 200 h without degra-dation across a broad current density range from 100 to 400 mA cm^(-2).This remarkable electrocatalytic stability arises from the dynamic and efficient repulsion of Cl^(-)at the catalytic interface,as proven by the post-reaction analysis of Cl^(-)distribution within the catalyst.Furthermore,a potentiodynamic polarization test revealed that the Mo-NiS/Se@GQDs catalyst has high corrosion potential(0.66 V)and low corrosion current density(122.93μA cm^(-2)),underscoring its excellent corrosion resistance.This research presents a novel approach to mitigate Cl^(-)corrosion during hydrogen production through seawater electrolysis,laying a solid foundation for advancing sustainable energy conversion technologies.
基金Supported by Science and Technology Commissioner Project of Tianjin Science and Technology Bureau(22ZYCGSN00630).
文摘[Objectives]To assess the carbon sink capacity in seawater suspension cage aquaculture of shellfish in Tianjin from 2015 to 2022.[Methods]The carbon sink capacity of different shellfish species was evaluated using both physical and value assessment methods.[Results]The shellfish cultivated in seawater suspension cages in Tianjin exhibited a significant capacity for carbon sinks.The amounts of carbon removed by suspension cage aquaculture of Rapana venosa,Crassostrea gigas,Scapharca subcrenata,Scapharca broughtonii and Argopectens irradias were 448.297,403.398,89.463,40.657,and 106.719 t,respectively.Furthermore,the total volume of shellfish cultivated in seawater exhibited a consistent upward trend over time,correlating with an annual increase in the amount of carbon removed.Among the shellfish cultivated in seawater suspension cages,the order of carbon sink capacity was as follows:C.gigas>R.venosa>A.irradias>S.subcrenata and S.broughtonii.In terms of the carbon sink capacity of soft tissues,the ranking was as follows:A.irradias>R.venosa>C.gigas>S.subcrenata and S.broughtonii.The structural and yield factors associated with seawater suspension cage aquaculture of shellfish significantly influenced the enhancement of the total carbon sink of cultivated shellfish.Notably,structural factors had a greater impact on the increase in the carbon sink of cultivated shellfish compared to total yield factors.[Conclusions]The findings will serve as a reference for enhancing the carbon sink potential of fisheries and achieving sustainable development in seawater aquaculture in Tianjin.
基金supported by the National Natural Science Foundation of China(No.51908408)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(No.2019KJ008)Basic Research Program of Jiangsu Province(No.BK20241845)。
文摘Direct seawater electrolysis is a promising way for hydrogen energy production.However,developing efficient and cost-effective electrocatalysts remains a significant challenge for seawater electrolysis with industrial-level current density due to high concentration of salts and compete reaction of chlorine evolution.Herein,a 1D NiFe_(2)O_(4)/NiMoO_(4) heterostructure as a bifunctional electrocatalyst for overall seawater splitting is constructed by combining NiMoO_(4) nanowires with NiFe_(2)O_(4)nanoparticles on carbon felt(CF)by a simple hydrothermal,impregnation and calcination method.The electrocatalyst exhibits low overpotential of 237 and 292 mV for oxygen evolution reaction and hydrogen evolution reaction at 400 m A/cm^(2)in the alkaline seawater(1 mol/L KOH+0.5 mol/L NaCl)due to the plentiful interfaces of NiFe_(2)O_(4)/NiMoO_4 which exposes more active sites and expands the active surface area,thereby enhancing its intrinsic activity and promoting the reaction kinetics.Notably,it displays low voltages of 1.95 V to drive current density of 400 m A/cm^(2)in alkaline seawater with its excellent stability of 200 h at above 100 m A/cm^(2),exhibiting outstanding performance and good corrosion resistance.This work provides an effective strategy for constructing efficient and cost-effective electrocatalysts for industrial seawater electrolysis,underscoring its potential for sustainable energy applications.