Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the pre...Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the present study was focus on the determination of the usage and potential/actual exposure of consumers to free glutamate from condiment and seasonings. There were several steps of the study, i.e. survey, laboratory analyses, data analyses, and evaluation of total exposure of free glutamate from condiment and seasonings. The survey was conducted to the 110 households in Bogor (rural) and 112 households in Jakarta (urban). The samples of condiment/seasoning were analyzed by using high performance liquid chromatography (HPLC) with fluorescent detector. The condiment/seasonings were categorized into 15 types, i.e. sweet soy sauce, salty soy sauce, fermented soybean paste, tomato sauce, MSG, premix seasoning, fermented fish/shrimp paste, chili sauce, ready to use seasoning, seasoned flour, dip and sauce, mayonnaise and mustard, spread, oyster and fish sauce, and teriyaki and others. The results of condiment/seasonings survey revealed that sweet soy sauce, MSG, and premix seasoning were used by most of households (±71% or more than 80 households) both in Bogor and Jakarta. The laboratory analyses of free glutamate from condiment/seasonings revealed that the highest free glutamate content was found in MSG (733.29 mg/g). Beside MSG, there were three other condiments that also had high free glutamate content, i.e. premix seasoning (70.77 mg/g in Bogor and 63.66 mg/g in Jakarta), oyster and fish sauce (46.76 mg/g in Bogor), and ready to use seasoning (15.71 mg/g in Jakarta). Although the average condiment/seasonings usage in Bogor (5.39 g/cap/day) was lower than that in Jakarta (9.62 g/cap/day), but the free glutamate intake from condiment/seasonings in Bogor (847.04 mg/cap/day) was higher than that in Jakarta (615.87 mg/cap/day). This was due to the high contribution of MSG that used in higher amount in Bogor.展开更多
Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical sca...Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical scavenging activity, reducing power, and color of the SPH were investigated. Pasteurization at 90 ℃ for 10 minutes led to a reduction of TPC and DPPH radical scavenging activity and an increase of reducing power of solid fraction of SPH by about 30%, 99%, and 100%, respectively. Consequently it increased TPC DPPH radical scavenging activity, and reducing power of the liquid phase by about 32%, 600%, and 100%, respectively. Storage at 28, 35, or 45 ℃ for 12 weeks altered color values and increased brownness intensity (OD420). The storage led to an apparent increase of the TPC and antioxidative activity of the product. The results indicate the possibility of producing healthy appetizers from protein hydrolysate prepared from by-products of the seafood industry.展开更多
Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their comb...Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their combination,and the reducing sugar content,the degree of hydrolysis(TDH),color,antioxidant capacity,inorganic elements and flavor of enzymatic hydrolysate were evaluated.The properties of enzymatic hydrolysate produced by compound enzymes were better than that of single enzyme,especially for the compound of enzymes Cel and Pap.The reducing sugar of enzymatic hydrolysate prepared by the combination of Cel and Pap increased 6.98 times and with TDH reached 25.80%±1.28%.In addition,edible fungi by-products after enzymatic hydrolysis exhibited yellowish-brown color with higher antioxidant capacity and little change of the volatile flavor.Enzymatic hydrolysate possessed a high retention rate of Na and Mg in the raw material,and there was no potential harm caused by excessive heavy metals(Cd,Pb,As).展开更多
Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives ...Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain....The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,bu...Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.展开更多
Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effect...Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effective indicators of ecological change.While previous studies have primarily focused on local community structures and species diversity during a specific season,there is a need to extend the research timeframe and explore broader spatial variations.Additionally,expanding from simple species diversity indices to more multidimensional diversity indices would provide a more comprehensive understanding of wetland health and resilience.To address these gaps,we investigated the effects of wetland degradation on bird diversity across taxonomic,phylogenetic,and functional dimensions in the Zoige Wetland,a plateau meadow wetland biodiversity hotspot.Surveys were conducted during both breeding(summer)and overwintering(winter)seasons across 20 transects in 5 sampling areas,representing 4 degradation levels(pristine,low,medium,and high).Our study recorded a total of 106 bird species from 32 families and 14 orders,revealing distinct seasonal patterns in bird community composition and diversity.Biodiversity indices were significantly higher in pristine and low-degraded wetlands,particularly benefiting waterfowl(Anseriformes,Ciconiiformes)and wading birds(Charadriiformes)in winter,when these areas provided superior food resources and habitat conditions.In contrast,medium and highly degraded wetlands supported increased numbers of terrestrial birds(Passeriformes)and raptors(Accipitriformes,Falconiformes).Seasonal differences in taxonomic,phylogenetic,and functional diversity indices highlighted the contrasting ecological roles of wetlands during breeding and overwintering periods.Furthermore,indicator species analysis revealed key species associated with specific degradation levels and seasons,providing valuable insights into wetland health.This study underscores the importance of spatiotemporal dynamics in understanding avian responses to wetland degradation.By linking seasonal patterns of bird diversity to habitat conditions,our findings contribute to conservation efforts and provide a framework for assessing wetland degradation and its ecological impacts.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by l...Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.展开更多
Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability ...Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.展开更多
Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisel...Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisely integrating acoustic signals,ensuring effective communication.Like humans,songbirds exhibit vocal learning behaviors supported by complex neural mechanisms.However,unlike most mammals,songbirds possess the remarkable ability to regenerate damaged auditory cells.These capabilities offer unique opportunities to explore how birds adjust their vocal behavior and auditory processing in response to dynamic environmental conditions.Recent studies have advanced our understanding of the plasticity of avian vocal communication system,yet the vocal diversity and neurophysiological mechanisms underlying vocalization and hearing have often been examined independently.A comprehensive overview of how these systems interact and adapt in birds remains lacking.To address this gap,this review synthesizes the peripheral and central features of avian vocalization and hearing,while also exploring the mechanisms that drive the remarkable plasticity of these systems.Furthermore,it explores seasonal variations in bird vocalization and hearing and adaptations to environmental noise,focusing on how hormonal,neural,and ecological factors together shape vocal behavior and auditory sensitivity.Avian vocal communication systems present an exceptional model for studying the integration of peripheral and central vocal-auditory pathways and their adaptive responses to ever-changing environments.This review underscores the dynamic interactions between avian vocal communication systems and environmental stimuli,offering new insights into broader principles of sensory processing,and neuroplasticity.展开更多
Objective:To more rapidly and accurately obtain minimal erythema dose(MED)and minimal persistent pigment dose(MPPD)values in sun protection testing,we conducted a retrospective exploration of previous test data.Method...Objective:To more rapidly and accurately obtain minimal erythema dose(MED)and minimal persistent pigment dose(MPPD)values in sun protection testing,we conducted a retrospective exploration of previous test data.Methods:This retrospective study analyzed sunscreen test data collected from January 1,2021,to September 1,2024,among long-term East Asian residents in Shenzhen,China.We investigated correlations between skin color characteristics,age,seasonal variations,and UV sensitivity indicators(MED and MPPD).Results:The results indicate that in the population tested,there is a significant negative correlation between ITA°and the unprotected MED of participants(P<0.05),but no statistical correlation with the unprotected MPPD(P>0.05).There was a minimal correlation between participant age and both unprotected MED and MPPD.When compared to the other seasons,participants in winter exhibited significantly higher unprotected MED(P<0.05),and the unprotected MPPD was significantly higher in the autumn and winter than in spring and summer(P<0.05).Conclusion:In conclusion,defining proprietary predictive MED and MPPD values based on laboratory test population data in sunscreen efficacy testing enhances the probability of actual values conforming to preset gradients,thereby improving test success rates and overall efficiency.Moreover,while the impact of age is relatively minor,differences in skin color,population,and season do affect the results of MED and MPPD,which in turn influence the outcomes of sun protection product testing.Therefore,it may be necessary to conduct customized sun protection capability tests tailored to the product's target demographic and environmental context.展开更多
Root tips are the main components of absorptive fine roots,but their seasonal dynamics and relationship to environmental factors remain unclear due to the difficulties in methodology.In this study,we explored the temp...Root tips are the main components of absorptive fine roots,but their seasonal dynamics and relationship to environmental factors remain unclear due to the difficulties in methodology.In this study,we explored the temporal patterns of root-tip production and mortality in monoculture plantations of five temperate tree species at a common site in northeastern China,and identified the general environmental controls on such processes.We made monthly in-situ assessments of root tip length(RTL)production and mortality in two hardwood and three coniferous species with a minirhizotron(MR)method during the growing seasons of 2008 and 2009.Air temperature,rainfall,soil temperature and water content at 10 cm depth were determined concurrently.RTL production in all species exhibited consistent peaks in summer(June–August)in two growing seasons.RTL mortality showed substantial interannual and interspecific variability,with peaks in autumn and winter in 2008,but various patterns in 2009.RTL production positively correlated with monthly soil and air temperature across all species,and with monthly rainfall in three coniferous species.However,there was no significant correlation between RTL production and soil water content.By contrast,RTL mortality was weakly related to environmental factors,showing positive correlations with soil temperature in Korean spruce,and with rainfall in Korean pine and Korean spruce.Our findings suggest that the seasonal patterns of RTL production are convergent across the five temperate tree species due to the overlapped distribution of heat and rainfall,which can conduce roots to maximizing the acquisition of nutrient resources in the soil.展开更多
Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climat...Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climate change.Meteorological variables have been widely used to quantify fire season in current studies.However,their results can not be used to assess climate impacts on the seasonality of fire activities.Here we utilized satellite-based Moderate Resolution Imaging Spectroradiometer(MODIS)burned area data from 2001 to 2022 to identify global fire season types based on the number of peaks within a year.Using satellite data and innovatively processing the data to obtain a more accurate length of the fire season.We divided fire season types and examined the spatial distribution of fire season types across the Koppen-Geiger climate(KGC)zones.At a global scale,we identified three major fire season types,including unimodal(31.25%),bimodal(52.07%),and random(16.69%).The unimodal fire season primarily occurs in boreal and tropical regions lasting about 2.7 mon.In comparison,temperate ecosystems tend to have a longer fire season(3 mon)with two peaks throughout the year.The KGC zones show divergent contributions from the fire season types,indicating potential impacts of the climatic conditions on fire seasonality in these regions.展开更多
Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity a...Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity and community assembly are still poorly understood.This study explored soil bacterial,fungal,and protistan communities during summer and winter in a coastal wetland affected by Spartina alterniflora invasion and subsequent Cyperus malaccensis or Kandelia obovata restoration.The results showed that bacterial,fungal,and protistan diversity were 2.63%,40.3%,and 9.90%higher in winter than in summer,respectively.Plant species had a distinct impact on microbial diversity.Notably,K.obovata restoration significantly increased bacterial diversity,but decreased protistan diversity,with no effect on fungal diversity when compared to S.alterniflora invasion.Season and plant species both significantly influenced the community structure of bacteria,fungi,and protists.However,protistan community structure was more sensitive to season compared to the structure of bacterial and fungal communities.The complexity of co-occurrence networks within or among bacteria,fungi,and protists was higher in winter than in summer.Bacterial and protistan community assembly was primarily driven by stochastic processes,while fungal assembly was dominated by deterministic processes.Bacterial and protistan community assembly exhibited lower stochasticity in winter compared to summer,suggesting a more deterministic assembly of communities during winter.Our findings highlight the critical role of season and plant species in regulating microbial communities,revealing higher microbial diversity,network complexity,and determinism in community assembly during winter compared to summer in a subtropical coastal wetland.展开更多
Antarctic krill(Euphausia superba)is a keystone species in the Southern Ocean;however,seasonal variations in reproductive development for krill are complex and remains unknown.A histological investigation with observa...Antarctic krill(Euphausia superba)is a keystone species in the Southern Ocean;however,seasonal variations in reproductive development for krill are complex and remains unknown.A histological investigation with observations of external secondary sex features of krill in the south Scotia Sea region was carried out using a multi-seasonal dataset for detail reproductive descriptions for this commercially important species.The monthly development of secondary sexual characteristics,the thelycum,as well as of oocytes over a period of two years were described.It was observed that krill have diverse reproductive development characteristics within the ovary,and that this function differently between the juvenile,sub-adult,and adult stages.During the summer,adult krill ovaries are large and ripe with oocytes rich in yolk ready for release in late summer.Post spawning,the ovaries resorb,fragment,and regress throughout the autumn and winter.During reproductive diapause period,krill focus on absorbing nutrients.Un-released eggs are reabsorbed by the ovary,the permanent germinal zone is active,and early oocytes begin to develop in preparation for the egg production phase.Krill that are about to spawn have an ovary that fills the space between the digestive gland and muscle.The ovarian development of krill is divided into 10 sexual developmental stages.As a part of this study,data on the carapace thickness with similar development patterns in krill size and carapace width,was investigated for the first time to help understand krill growth and development.展开更多
The symbiotic association between reef-building corals and Symbiodiniaceae is pivotal for coral reef ecosystems,yet remains susceptible to environmental factors.Currently,there is a dearth of research examining season...The symbiotic association between reef-building corals and Symbiodiniaceae is pivotal for coral reef ecosystems,yet remains susceptible to environmental factors.Currently,there is a dearth of research examining seasonal fluctuations in coral-associated Symbiodiniaceae communities.In this study,we investigated the seasonal dynamics of Symbiodiniaceae communities associated with coral species in the Luhuitou coral reef using high-throughput sequencing techniques and SymPortal analytical framework.The results indicated that the genus Cladocopium exhibited dominance(averaging 82%),followed by Durusdinium(18%)and Breviolum(0.01%)within the examined coral species.Among the 521 Symbiodiniaceae ITS2 sequence types,C15 emerged as the prevalent type(13.24%),trailed by C3u(9.51%)and D1(8.57%).Interestingly,Symbiodiniaceae communities varied among different coral species.Pocillopora damicornis displayed a predominant association with Durusdinium,while Porites lutea,Goniastrea retiformis,Montipora truncata,Montipora aequituberculata,and Acropora divaricata were entirely dominated by the genus Cladocopium(100%),showcasing distinct host specificity.In the cases of Hydnophora exesa,Acropora latistella,Acropora digitifera,and seawater,both Cladocopium and Durusdinium were concurrently detected.Moreover,the diversity of Symbiodiniaceae associated with P.damicornis,P.lutea,G.retiformis,M.truncata,M.aequituberculata,and A.digitifera exhibited significant variations across different seasons.Notably,the results revealed that the alterations in Symbiodiniaceae community compositions were primarily driven by nutrient concentrations and seawater temperature.The network analysis of Symbiodiniaceae revealed the dominant Symbiodiniaceae types C15,C17f,C3u,C3,and D4 were exclusive.This study provided the seasonal variation characteristics of Symbiodiniaceae communities among different coral species,which may be a potential adaptive mechanism to environmental conditions.展开更多
文摘Free glutamate has been known as flavor enhancer. Commercially, free glutamate is available in form of monosodium glutamate (MSG) crystal. Seasoning or premix may also contain free glutamate or MSG. The aim of the present study was focus on the determination of the usage and potential/actual exposure of consumers to free glutamate from condiment and seasonings. There were several steps of the study, i.e. survey, laboratory analyses, data analyses, and evaluation of total exposure of free glutamate from condiment and seasonings. The survey was conducted to the 110 households in Bogor (rural) and 112 households in Jakarta (urban). The samples of condiment/seasoning were analyzed by using high performance liquid chromatography (HPLC) with fluorescent detector. The condiment/seasonings were categorized into 15 types, i.e. sweet soy sauce, salty soy sauce, fermented soybean paste, tomato sauce, MSG, premix seasoning, fermented fish/shrimp paste, chili sauce, ready to use seasoning, seasoned flour, dip and sauce, mayonnaise and mustard, spread, oyster and fish sauce, and teriyaki and others. The results of condiment/seasonings survey revealed that sweet soy sauce, MSG, and premix seasoning were used by most of households (±71% or more than 80 households) both in Bogor and Jakarta. The laboratory analyses of free glutamate from condiment/seasonings revealed that the highest free glutamate content was found in MSG (733.29 mg/g). Beside MSG, there were three other condiments that also had high free glutamate content, i.e. premix seasoning (70.77 mg/g in Bogor and 63.66 mg/g in Jakarta), oyster and fish sauce (46.76 mg/g in Bogor), and ready to use seasoning (15.71 mg/g in Jakarta). Although the average condiment/seasonings usage in Bogor (5.39 g/cap/day) was lower than that in Jakarta (9.62 g/cap/day), but the free glutamate intake from condiment/seasonings in Bogor (847.04 mg/cap/day) was higher than that in Jakarta (615.87 mg/cap/day). This was due to the high contribution of MSG that used in higher amount in Bogor.
文摘Protein hydrolysate prepared from fish and shrimp by-products were used to prepare a seasoning protein hydrolysate (SPH). The effects of pasteurization and storage on total phenolic content (TPC), DPPH radical scavenging activity, reducing power, and color of the SPH were investigated. Pasteurization at 90 ℃ for 10 minutes led to a reduction of TPC and DPPH radical scavenging activity and an increase of reducing power of solid fraction of SPH by about 30%, 99%, and 100%, respectively. Consequently it increased TPC DPPH radical scavenging activity, and reducing power of the liquid phase by about 32%, 600%, and 100%, respectively. Storage at 28, 35, or 45 ℃ for 12 weeks altered color values and increased brownness intensity (OD420). The storage led to an apparent increase of the TPC and antioxidative activity of the product. The results indicate the possibility of producing healthy appetizers from protein hydrolysate prepared from by-products of the seafood industry.
基金supports from the National Key R&D Program of China(No.2018YFD0700303)Jiangsu Province(China)Key Project in Agriculture(Contract No.BE2015310217)+1 种基金Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology(No.FMZ202003)National First-Class Discipline Program of Food Science and Technology(No.JUFSTR20180205),all of which enabled us to carry out this study.
文摘Edible fungi residuals are by-products from the preparation process of edible fungi hot pot soup seasoning.Enzymatic hydrolysate was prepared by cellulase(Cel),papain(Pap)and neutral protease(Nep)as well as their combination,and the reducing sugar content,the degree of hydrolysis(TDH),color,antioxidant capacity,inorganic elements and flavor of enzymatic hydrolysate were evaluated.The properties of enzymatic hydrolysate produced by compound enzymes were better than that of single enzyme,especially for the compound of enzymes Cel and Pap.The reducing sugar of enzymatic hydrolysate prepared by the combination of Cel and Pap increased 6.98 times and with TDH reached 25.80%±1.28%.In addition,edible fungi by-products after enzymatic hydrolysis exhibited yellowish-brown color with higher antioxidant capacity and little change of the volatile flavor.Enzymatic hydrolysate possessed a high retention rate of Na and Mg in the raw material,and there was no potential harm caused by excessive heavy metals(Cd,Pb,As).
基金supported by the National Natural Science Foundation of China(Grant No.U2342208)support from NSF/Climate Dynamics Award#2025057。
文摘Predicting monsoon climate is one of the major endeavors in climate science and is becoming increasingly challenging due to global warming. The accuracy of monsoon seasonal predictions significantly impacts the lives of billions who depend on or are affected by monsoons, as it is essential for the water cycle, food security, ecology, disaster prevention, and the economy of monsoon regions. Given the extensive literature on Asian monsoon climate prediction, we limit our focus to reviewing the seasonal prediction and predictability of the Asian Summer Monsoon (ASM). However, much of this review is also relevant to monsoon predictions in other seasons and regions. Over the past two decades, considerable progress has been made in the seasonal forecasting of the ASM, driven by an enhanced understanding of the sources of predictability and the dynamics of seasonal variability, along with advanced development in sophisticated models and technologies. This review centers on advances in understanding the physical foundation for monsoon climate prediction (section 2), significant findings and insights into the primary and regional sources of predictability arising from feedback processes among various climate components (sections 3 and 4), the effects of global warming and external forcings on predictability (section 5), developments in seasonal prediction models and techniques (section 6), the challenges and limitations of monsoon climate prediction (section 7), and emerging research trends with suggestions for future directions (section 8). We hope this review will stimulate creative activities to enhance monsoon climate prediction.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the Australian Research Council(Grant No.CE230100012)。
文摘The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
基金supported by the National Natural Science Foundation of China(Nos.42030707,72394404)the International Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Fundamental Research Fund for the Central Universities(Nos.20720210083,20720210082).
文摘Halocarbons play a vital role in ozone depletion and global warming,and are regulated by the Montreal Protocol(MP)and its amendments.China has been identified as an important contributor to the halocarbon emissions,but the regional sources of halocarbons in China are not yet well comprehended.To investigate the characteristics,emissions,and source profiles,this study conducted a field campaign in Xiamen,a coastal city in southeastern China.Higher enhancements were found in the unregulated halocarbons(CH_(3)Cl,CH_(2)Cl_(2),CHCl_(3))than in the MP eliminated species(CCl_(4),CH_(3)Br)and theMP controlled species(HCFCs,HFCs).Many of the measured halocarbons varied seasonally and regionally,depending on the anthropogenic sources and atmospheric transport.Backward trajectory analysis showed that the air masses from inland were polluted over Shandong,Hebei,and northern Fujian in the cold season,while the air masses fromthe sea in the warm season were clean.Different air masses in two seasons were associated with the halocarbon patterns in the study area.Industrial activities,especially solvent usage,were the primary sources of halocarbons.The emission hot spots in Fujian Province were concentrated in Sanming,Fuzhou,and Xiamen,and the unregulated halocarbons made the largest contribution.This study provides an insight for a deep understanding of the characteristics and potential sources of halocarbons,and for strengthened management of halocarbons in China.
基金supported by the Southwest Minzu University Research Startup Funds (No.16011221038,RQD2022021)Double World-Class Project (No.CX2023010)。
文摘Wetland degradation is an escalating global challenge with profound impacts on animal diversity,particularly during successional processes.Birds,as highly mobile and environmentally sensitive organisms,serve as effective indicators of ecological change.While previous studies have primarily focused on local community structures and species diversity during a specific season,there is a need to extend the research timeframe and explore broader spatial variations.Additionally,expanding from simple species diversity indices to more multidimensional diversity indices would provide a more comprehensive understanding of wetland health and resilience.To address these gaps,we investigated the effects of wetland degradation on bird diversity across taxonomic,phylogenetic,and functional dimensions in the Zoige Wetland,a plateau meadow wetland biodiversity hotspot.Surveys were conducted during both breeding(summer)and overwintering(winter)seasons across 20 transects in 5 sampling areas,representing 4 degradation levels(pristine,low,medium,and high).Our study recorded a total of 106 bird species from 32 families and 14 orders,revealing distinct seasonal patterns in bird community composition and diversity.Biodiversity indices were significantly higher in pristine and low-degraded wetlands,particularly benefiting waterfowl(Anseriformes,Ciconiiformes)and wading birds(Charadriiformes)in winter,when these areas provided superior food resources and habitat conditions.In contrast,medium and highly degraded wetlands supported increased numbers of terrestrial birds(Passeriformes)and raptors(Accipitriformes,Falconiformes).Seasonal differences in taxonomic,phylogenetic,and functional diversity indices highlighted the contrasting ecological roles of wetlands during breeding and overwintering periods.Furthermore,indicator species analysis revealed key species associated with specific degradation levels and seasons,providing valuable insights into wetland health.This study underscores the importance of spatiotemporal dynamics in understanding avian responses to wetland degradation.By linking seasonal patterns of bird diversity to habitat conditions,our findings contribute to conservation efforts and provide a framework for assessing wetland degradation and its ecological impacts.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
基金supported by the NSFC (42374204, 42004143,42364012)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences (Grant No.YSBR-018)+3 种基金the Scientific Projects of Hainan Province(KJRC2023C05, ZDYF2021GXJS040)the Innovational Fund for Scientific and Technological Personnel of Hainan Provincethe Chinese Meridian ProjectPandeng Program of National Space Science Center,Chinese Academy of Sciences
文摘Physical and chemical processes observed in the mesosphere and thermosphere above the Earth’s low latitudes are complex and highly interrelated to activity in the low-latitude ionosphere.Metallic sodium detected by lidar can yield clues to dynamic and chemical processes in these spatial layers above the Earth’s atmosphere.This paper is based on sodium layer data collected at two low-latitude stations,one in the northern hemisphere and one in the southern.The low-latitude sodium layer exhibits conspicuous seasonal variations in shape,density,and altitude;these variations are similar between Earth’s hemispheres:sodium layer density at both stations reaches its seasonal maximum in autumn and minimum in summer.However,maximal Na density over Brazil is greater than that over Hainan.Nocturnal variations of Na density above the two low-latitude stations are also similar;at both,maxima are observed before sunrise.Some variations of the Na layer over Brazil that differ from those observed in the northern hemisphere may be related to the South Atlantic Magnetic Anomaly(SAMA)or fountain effect.We suggest that low-latitude Na layer data may provide useful additional evidence that could significantly improve the low-latitude part of the WACCM-Na model.
基金jointly supported by the National Natural Science Foundation of China [grant number 42265012]the Funding by the Fengyun Application Pioneering Project [grant number FY-APP-ZX-2022.0221]。
文摘Forest ecosystems play key roles in mitigating human-induced climate change through enhanced carbon uptake;however,frequently occurring climate extremes and human activities have considerably threatened the stability of forests.At the same time,detailed accounts of disturbances and forest responses are not yet well quantified in Asia.This study employed the Breaks For Additive Seasonal and Trend method-an abrupt-change detection method-to analyze the Enhanced Vegetation Index time series in East Asia,South Asia,and Southeast Asia.This approach allowed us to detect forest disturbance and quantify the resilience after disturbance.Results showed that 20%of forests experienced disturbance with an increasing trend from 2000 to 2022,and Southeast Asian countries were more severely affected by disturbances.Specifically,95%of forests had robust resilience and could recover from disturbance within a few decades.The resilience of forests suffering from greater magnitude of disturbance tended to be stronger than forests with lower disturbance magnitude.In summary,this study investigated the resilience of forests across the low and middle latitudes of Asia over the past two decades.The authors found that most forests exhibited good resilience after disturbance and about two-thirds had recovered to a better state in 2022.The findings of this study underscore the complex relationship between disturbance and resilience,contributing to comprehension of forest resilience through satellite remote sensing.
基金supported by the National Natural Science Foundation of China(NSFC,32471572)to D.L.the NSFC(32401298)the Hebei Natural Science Foundation(C2023205016)to L.W。
文摘Avian vocal communication represents one of the most intricate forms of animal language,playing a critical role in behavioral interactions.Both peripheral and central auditory-vocal pathways are essential for precisely integrating acoustic signals,ensuring effective communication.Like humans,songbirds exhibit vocal learning behaviors supported by complex neural mechanisms.However,unlike most mammals,songbirds possess the remarkable ability to regenerate damaged auditory cells.These capabilities offer unique opportunities to explore how birds adjust their vocal behavior and auditory processing in response to dynamic environmental conditions.Recent studies have advanced our understanding of the plasticity of avian vocal communication system,yet the vocal diversity and neurophysiological mechanisms underlying vocalization and hearing have often been examined independently.A comprehensive overview of how these systems interact and adapt in birds remains lacking.To address this gap,this review synthesizes the peripheral and central features of avian vocalization and hearing,while also exploring the mechanisms that drive the remarkable plasticity of these systems.Furthermore,it explores seasonal variations in bird vocalization and hearing and adaptations to environmental noise,focusing on how hormonal,neural,and ecological factors together shape vocal behavior and auditory sensitivity.Avian vocal communication systems present an exceptional model for studying the integration of peripheral and central vocal-auditory pathways and their adaptive responses to ever-changing environments.This review underscores the dynamic interactions between avian vocal communication systems and environmental stimuli,offering new insights into broader principles of sensory processing,and neuroplasticity.
文摘Objective:To more rapidly and accurately obtain minimal erythema dose(MED)and minimal persistent pigment dose(MPPD)values in sun protection testing,we conducted a retrospective exploration of previous test data.Methods:This retrospective study analyzed sunscreen test data collected from January 1,2021,to September 1,2024,among long-term East Asian residents in Shenzhen,China.We investigated correlations between skin color characteristics,age,seasonal variations,and UV sensitivity indicators(MED and MPPD).Results:The results indicate that in the population tested,there is a significant negative correlation between ITA°and the unprotected MED of participants(P<0.05),but no statistical correlation with the unprotected MPPD(P>0.05).There was a minimal correlation between participant age and both unprotected MED and MPPD.When compared to the other seasons,participants in winter exhibited significantly higher unprotected MED(P<0.05),and the unprotected MPPD was significantly higher in the autumn and winter than in spring and summer(P<0.05).Conclusion:In conclusion,defining proprietary predictive MED and MPPD values based on laboratory test population data in sunscreen efficacy testing enhances the probability of actual values conforming to preset gradients,thereby improving test success rates and overall efficiency.Moreover,while the impact of age is relatively minor,differences in skin color,population,and season do affect the results of MED and MPPD,which in turn influence the outcomes of sun protection product testing.Therefore,it may be necessary to conduct customized sun protection capability tests tailored to the product's target demographic and environmental context.
基金supported by the National Natural Science Foundation of China(32071749)。
文摘Root tips are the main components of absorptive fine roots,but their seasonal dynamics and relationship to environmental factors remain unclear due to the difficulties in methodology.In this study,we explored the temporal patterns of root-tip production and mortality in monoculture plantations of five temperate tree species at a common site in northeastern China,and identified the general environmental controls on such processes.We made monthly in-situ assessments of root tip length(RTL)production and mortality in two hardwood and three coniferous species with a minirhizotron(MR)method during the growing seasons of 2008 and 2009.Air temperature,rainfall,soil temperature and water content at 10 cm depth were determined concurrently.RTL production in all species exhibited consistent peaks in summer(June–August)in two growing seasons.RTL mortality showed substantial interannual and interspecific variability,with peaks in autumn and winter in 2008,but various patterns in 2009.RTL production positively correlated with monthly soil and air temperature across all species,and with monthly rainfall in three coniferous species.However,there was no significant correlation between RTL production and soil water content.By contrast,RTL mortality was weakly related to environmental factors,showing positive correlations with soil temperature in Korean spruce,and with rainfall in Korean pine and Korean spruce.Our findings suggest that the seasonal patterns of RTL production are convergent across the five temperate tree species due to the overlapped distribution of heat and rainfall,which can conduce roots to maximizing the acquisition of nutrient resources in the soil.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Fire season affects the dynamic changes of post-fire vegetation communities and carbon emissions.Analyzing its global patterns supports understanding of the ecological impacts of fires and responses of fires to climate change.Meteorological variables have been widely used to quantify fire season in current studies.However,their results can not be used to assess climate impacts on the seasonality of fire activities.Here we utilized satellite-based Moderate Resolution Imaging Spectroradiometer(MODIS)burned area data from 2001 to 2022 to identify global fire season types based on the number of peaks within a year.Using satellite data and innovatively processing the data to obtain a more accurate length of the fire season.We divided fire season types and examined the spatial distribution of fire season types across the Koppen-Geiger climate(KGC)zones.At a global scale,we identified three major fire season types,including unimodal(31.25%),bimodal(52.07%),and random(16.69%).The unimodal fire season primarily occurs in boreal and tropical regions lasting about 2.7 mon.In comparison,temperate ecosystems tend to have a longer fire season(3 mon)with two peaks throughout the year.The KGC zones show divergent contributions from the fire season types,indicating potential impacts of the climatic conditions on fire seasonality in these regions.
基金supported by the Natural Resources Science and Technology Innovation Project of Fujian Province,China(No.KY-090000-04-2022-012)the National Natural Science Foundation of China(Nos.42077041 and 42377301)+1 种基金the National Natural Science Foundation of Fujian Province,China(No.2021J011038)the Talent Introduction Program of Minjiang University,China(No.MJY20012).
文摘Soil microbiomes are significant for biodiversity,crucial for ecosystem functions,and vital for the health of various organisms.Nevertheless,the impacts of season and plant species shifts on soil microbial diversity and community assembly are still poorly understood.This study explored soil bacterial,fungal,and protistan communities during summer and winter in a coastal wetland affected by Spartina alterniflora invasion and subsequent Cyperus malaccensis or Kandelia obovata restoration.The results showed that bacterial,fungal,and protistan diversity were 2.63%,40.3%,and 9.90%higher in winter than in summer,respectively.Plant species had a distinct impact on microbial diversity.Notably,K.obovata restoration significantly increased bacterial diversity,but decreased protistan diversity,with no effect on fungal diversity when compared to S.alterniflora invasion.Season and plant species both significantly influenced the community structure of bacteria,fungi,and protists.However,protistan community structure was more sensitive to season compared to the structure of bacterial and fungal communities.The complexity of co-occurrence networks within or among bacteria,fungi,and protists was higher in winter than in summer.Bacterial and protistan community assembly was primarily driven by stochastic processes,while fungal assembly was dominated by deterministic processes.Bacterial and protistan community assembly exhibited lower stochasticity in winter compared to summer,suggesting a more deterministic assembly of communities during winter.Our findings highlight the critical role of season and plant species in regulating microbial communities,revealing higher microbial diversity,network complexity,and determinism in community assembly during winter compared to summer in a subtropical coastal wetland.
基金Supported by the Inter-governmental Science and Technology Innovation(STI)Cooperation Special Program of the National Key Research and Development Program of China(No.2023YFE0104500)the NIWA-SHOU-Otago Joint Research Center on Antarctic Marine Science。
文摘Antarctic krill(Euphausia superba)is a keystone species in the Southern Ocean;however,seasonal variations in reproductive development for krill are complex and remains unknown.A histological investigation with observations of external secondary sex features of krill in the south Scotia Sea region was carried out using a multi-seasonal dataset for detail reproductive descriptions for this commercially important species.The monthly development of secondary sexual characteristics,the thelycum,as well as of oocytes over a period of two years were described.It was observed that krill have diverse reproductive development characteristics within the ovary,and that this function differently between the juvenile,sub-adult,and adult stages.During the summer,adult krill ovaries are large and ripe with oocytes rich in yolk ready for release in late summer.Post spawning,the ovaries resorb,fragment,and regress throughout the autumn and winter.During reproductive diapause period,krill focus on absorbing nutrients.Un-released eggs are reabsorbed by the ovary,the permanent germinal zone is active,and early oocytes begin to develop in preparation for the egg production phase.Krill that are about to spawn have an ovary that fills the space between the digestive gland and muscle.The ovarian development of krill is divided into 10 sexual developmental stages.As a part of this study,data on the carapace thickness with similar development patterns in krill size and carapace width,was investigated for the first time to help understand krill growth and development.
文摘The symbiotic association between reef-building corals and Symbiodiniaceae is pivotal for coral reef ecosystems,yet remains susceptible to environmental factors.Currently,there is a dearth of research examining seasonal fluctuations in coral-associated Symbiodiniaceae communities.In this study,we investigated the seasonal dynamics of Symbiodiniaceae communities associated with coral species in the Luhuitou coral reef using high-throughput sequencing techniques and SymPortal analytical framework.The results indicated that the genus Cladocopium exhibited dominance(averaging 82%),followed by Durusdinium(18%)and Breviolum(0.01%)within the examined coral species.Among the 521 Symbiodiniaceae ITS2 sequence types,C15 emerged as the prevalent type(13.24%),trailed by C3u(9.51%)and D1(8.57%).Interestingly,Symbiodiniaceae communities varied among different coral species.Pocillopora damicornis displayed a predominant association with Durusdinium,while Porites lutea,Goniastrea retiformis,Montipora truncata,Montipora aequituberculata,and Acropora divaricata were entirely dominated by the genus Cladocopium(100%),showcasing distinct host specificity.In the cases of Hydnophora exesa,Acropora latistella,Acropora digitifera,and seawater,both Cladocopium and Durusdinium were concurrently detected.Moreover,the diversity of Symbiodiniaceae associated with P.damicornis,P.lutea,G.retiformis,M.truncata,M.aequituberculata,and A.digitifera exhibited significant variations across different seasons.Notably,the results revealed that the alterations in Symbiodiniaceae community compositions were primarily driven by nutrient concentrations and seawater temperature.The network analysis of Symbiodiniaceae revealed the dominant Symbiodiniaceae types C15,C17f,C3u,C3,and D4 were exclusive.This study provided the seasonal variation characteristics of Symbiodiniaceae communities among different coral species,which may be a potential adaptive mechanism to environmental conditions.