期刊文献+
共找到22,742篇文章
< 1 2 250 >
每页显示 20 50 100
Study and application of the influence of inclination angle on the cross-fusion mechanism of high gas thick coal seam 被引量:1
1
作者 Pengxiang Zhao Zechen Chang +4 位作者 Shugang Li Risheng Zhuo Yongyong Jia Qiudong Shao Wen Lei 《International Journal of Mining Science and Technology》 2025年第1期69-85,共17页
In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-... In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction. 展开更多
关键词 Coal seam dip angle Cross fusion High gas thick coal seam Overburden fracture Gas transport and storage areas
在线阅读 下载PDF
面向DCT系数分析的Seam Carving对象移除定位方法
2
作者 蔺聪 马鸿基 +3 位作者 司徒晓晴 甄荣桂 肖洪涛 邓宇乔 《计算机工程与科学》 北大核心 2025年第10期1787-1798,共12页
随着数字图像处理技术的飞速发展,图像篡改手段日益多样化和隐蔽化,其中一种重要篡改方式就是对象移除。Seam Carving可应用于调整图像大小和对象移除。针对通过Seam Carving进行对象移除这一篡改方式,首次将双量化效应引入Seam Carvin... 随着数字图像处理技术的飞速发展,图像篡改手段日益多样化和隐蔽化,其中一种重要篡改方式就是对象移除。Seam Carving可应用于调整图像大小和对象移除。针对通过Seam Carving进行对象移除这一篡改方式,首次将双量化效应引入Seam Carving对象移除,根据Seam Carving对象移除过程中产生的DCT异常块,提出了一种基于DCT系数分析的Seam Carving对象移除定位方法。首先,提取JPEG图像中的量化矩阵和DCT系数直方图。其次,根据直方图估算出主要量化矩阵和原始DCT系数,并使用贝叶斯方法估算出图像篡改区域的后验概率图。最后,对该后验概率图进行去噪和定位,得到移除区域的准确位置。实验结果表明,该方法能够有效地检测和定位Seam Carving对象移除,为该问题的解决提供了一种新的研究思路。 展开更多
关键词 图像取证 篡改检测 对象移除 seam Carving 双量化效应
在线阅读 下载PDF
Properties and structure investigation of the friction stir welding seam of the AA6061-T6 plates 被引量:2
3
作者 M.Soukieh W.Harara +2 位作者 H.Koudaimi M.Halak M.Kassem 《China Welding》 2025年第2期132-138,共7页
Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW sea... Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement. 展开更多
关键词 AA6061-T6 Friction stir welding welding parameters temperature distribution numerical modeling FSW weld seam
在线阅读 下载PDF
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
4
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Differential accumulation characteristics and production of coalbed methane/coal-rock gas:A case study of the No.8 coal seam of the Carboniferous Benxi Formation in the Daji block,Ordos Basin,NW China 被引量:1
5
作者 ZHOU Lihong LI Yong +9 位作者 DING Rong XIONG Xianyue HOU Wei LI Yongzhou MA Hui FU Haijiao DU Yi ZHANG Weiqi ZHU Zhitong WANG Zhuangsen 《Petroleum Exploration and Development》 2025年第4期872-882,共11页
Based on the coalbed methane(CBM)/coal-rock gas(CRG)geological,geophysical,and experimental testing data from the Daji block in the Ordos Basin,the coal-forming and hydrocarbon generation&accumulation characterist... Based on the coalbed methane(CBM)/coal-rock gas(CRG)geological,geophysical,and experimental testing data from the Daji block in the Ordos Basin,the coal-forming and hydrocarbon generation&accumulation characteristics across different zones were dissected,and the key factors controlling the differential CBM/CRG enrichment were identified.The No.8 coal seam of the Carboniferous Benxi Formation in the Daji block is 8-10 m thick,typically overlain by limestone.The primary hydrocarbon generation phase occurred during the Early Cretaceous.Based on the differences in tectonic evolution and CRG occurrence,and with the maximum vitrinite reflectance of 2.0%and burial depth of 1800 m as boundaries,the study area is divided into deeply buried and deeply preserved,deeply buried and shallowly preserved,and shallowly buried and shallowly preserved zones.The deeply buried and deeply preserved zone contains gas content of 22-35 m^(3)/t,adsorbed gas saturation of 95%-100%,and formation water with total dissolved solid(TDS)higher than 50000 mg/L.This zone features structural stability and strong sealing capacity,with high gas production rates.The deeply buried and shallowly preserved zone contains gas content of 16-20 m^(3)/t,adsorbed gas saturation of 80%-95%,and formation water with TDS of 5000-50000 mg/L.This zone exhibits localized structural modification and hydrodynamic sealing,with moderate gas production rate.The shallowly buried and shallowly preserved zone contains gas content of 8-16 m^(3)/t,adsorbed gas saturation of 50%-70%,and formation water with TDS lower than 5000 mg/L.This zone experienced intense uplift,resulting in poor sealing and secondary alteration of the primary gas reservoir,with partial adsorbed gas loss,and low gas production rate.A depositional unification and structural divergence model is proposed,that is,although coal seams across the basin experienced broadly similar depositional and tectonic histories,differences in tectonic intensity have led to spatial heterogeneity in the maximum burial depth(i.e.,thermal maturity of coal)and current burial depth and occurrence of CRG(i.e.,gas content and occurrence state).The research results provide valuable guidance for advancing the theoretical understanding of CBM/CRG enrichment and for improving exploration and development practices. 展开更多
关键词 deep coalbed methane deep coal-rock gas depositional unification and structural divergence differential enrichment Carboniferou Benxi Formation No.8 coal seam Daji block Ordos Basin
在线阅读 下载PDF
低掺量SBS对SEAM改性沥青混合料路用性能的影响
6
作者 蒋悦然 《合成材料老化与应用》 2025年第3期39-42,共4页
为改善SEAM改性沥青混合料的综合路用性能,通过浸水马歇尔试验与冻融劈裂试验、低温小梁弯曲试验、普通车辙试验、四点弯曲试验,分别对掺加不同用量(2.5%、3.5%、4.5%)SBS改性剂的SBS/SEAM复合改性沥青混合料水稳定性、低温抗裂性、高... 为改善SEAM改性沥青混合料的综合路用性能,通过浸水马歇尔试验与冻融劈裂试验、低温小梁弯曲试验、普通车辙试验、四点弯曲试验,分别对掺加不同用量(2.5%、3.5%、4.5%)SBS改性剂的SBS/SEAM复合改性沥青混合料水稳定性、低温抗裂性、高温稳定性和抗疲劳性能展开试验研究,并以25%SEAM改性沥青混合料和5%SBS改性沥青混合料为对照组。试验结果表明,加入适量的SBS显著改善了SEAM改性沥青混合料的低温抗裂性和水稳定性,并解决了25%SEAM改性沥青混合料低温抗裂性和水稳定性指标不满足规范要求的难题;一定掺量的SBS改性剂可明显增强SEAM改性沥青混合料的高温抗车辙能力和抗疲劳性能。同时考虑经济性因素,建议SBS用量以3.5%为宜。 展开更多
关键词 道路工程 硫磺改性剂(seam) SBS 沥青混合料 路用性能
在线阅读 下载PDF
Prediction of sandstone porosity in coal seam roof based on variable mode decomposition and random forest method
7
作者 Huang Ya-ping Qi Xue-mei +3 位作者 Cheng Yan Zhou Ling-ling Yan Jia-hao Huang Fan-rui 《Applied Geophysics》 2025年第1期197-208,235,236,共14页
Evaluation of water richness in sandstone is an important research topic in the prevention and control of mine water disasters,and the water richness in sandstone is closely related to its porosity.The refl ection sei... Evaluation of water richness in sandstone is an important research topic in the prevention and control of mine water disasters,and the water richness in sandstone is closely related to its porosity.The refl ection seismic exploration data have high-density spatial sampling information,which provides an important data basis for the prediction of sandstone porosity in coal seam roofs by using refl ection seismic data.First,the basic principles of the variational mode decomposition(VMD)method and the random forest method are introduced.Then,the geological model of coal seam roof sandstone is constructed,seismic forward modeling is conducted,and random noise is added.The decomposition eff ects of the empirical mode decomposition(EMD)method and VMD method on noisy signals are compared and analyzed.The test results show that the firstorder intrinsic mode functions(IMF1)and IMF2 decomposed by the VMD method contain the main eff ective components of seismic signals.A prediction process of sandstone porosity in coal seam roofs based on the combination of VMD and random forest method is proposed.The feasibility and eff ectiveness of the method are verified by trial calculation in the porosity prediction of model data.Taking the actual coalfield refl ection seismic data as an example,the sandstone porosity of the 8 coal seam roof is predicted.The application results show the potential application value of the new porosity prediction method proposed in this study.This method has important theoretical guiding significance for evaluating water richness in coal seam roof sandstone and the prevention and control of mine water disasters. 展开更多
关键词 VMD random forest method coal seams SANDSTONE POROSITY
在线阅读 下载PDF
基于全局图像结构信息的Seam Carving算法 被引量:2
8
作者 聂栋栋 马勤勇 《计算机应用研究》 CSCD 北大核心 2011年第3期1198-1200,共3页
提出了一种基于全局图像结构信息的Seam Carving算法,它根据像素的重要性修改图像尺寸和比例。通过从图像提取特定方向的边缘结构信息,再利用每个像素的梯度信息,从全局和局部两方面定义新的像素能量计算函数,以此来阻止seam通路与特定... 提出了一种基于全局图像结构信息的Seam Carving算法,它根据像素的重要性修改图像尺寸和比例。通过从图像提取特定方向的边缘结构信息,再利用每个像素的梯度信息,从全局和局部两方面定义新的像素能量计算函数,以此来阻止seam通路与特定方向图像边缘的交叉,避免边缘像素的不一致位移,以此保持图像的边缘结构。实验结果证明,算法减少了处理后图像的结构形变,有效改进了Seam Carving算法的处理效果。 展开更多
关键词 seam Carving算法 seam通路 边缘提取 像素梯度 动态规划
在线阅读 下载PDF
Nitrogen injection for enhanced coal seam gas extraction(N2-ECGE):A simulation study
9
作者 Feng Du Yiyang Zhang +2 位作者 Kai Wang Jiazhi Sun Yuanyuan Xu 《Earth Energy Science》 2025年第2期193-202,共10页
As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objective... As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objectives for this research are to explore the efficiency of N_(2) injection to enhance gas extraction from coal seams(N_(2)-ECGE)and its impact on coal seam permeability.By developing a fluid-solid coupling model and using COMSOL Multiphysics to perform numerical simulations,the changes in gas pressure,methane content,gas production,output rate and permeability of coal seams were comparatively analyzed under the two methods of direct extraction and N_(2)-ECGE.The research results show that N_(2)-ECGE can significantly improve the coal seam gas pressure and reduce the coal seam CH_(4) content,and the larger the N_(2) injection pressure the more significant the reduction effect.Meanwhile,N_(2)-ECGE can significantly increase the CH_(4) extraction and output rate,and the increase of N_(2) pressure further improves the extraction efficiency.In addition,the pressure of nitrogen injection has a remarkable effect on coal seam permeability,high pressure of nitrogen injection can increase the permeability in the time of no disturbance,but the rate of permeability decreases more quickly after disturbed.The effect of strain due to adsorption desorption on coal seam permeability dominates.Despite model construction limitations,this research offers essential theoretical and practical direction for N_(2) injection to enhance the permeability evolution law of coal seam gas extraction process. 展开更多
关键词 Coal seam gas PERMEABILITY Nitrogen injection extraction Fluid solid coupling Numerical simulation
在线阅读 下载PDF
Evaluation of CO_(2) storage in fractured coal seam and the effect of coal fines
10
作者 Qian Wang Zhi-Jun Zhang +3 位作者 Jian-Long Xiong Jian Shen Paul W.J.Glover Piroska Lorinczi 《Petroleum Science》 2025年第6期2502-2515,共14页
Gas channeling in fractures during CO_(2) injection into the deep coal seam seriously reduces the CO_(2) storage efficiency after the development of coalbed methane.The generation and migration of coal fines causes bl... Gas channeling in fractures during CO_(2) injection into the deep coal seam seriously reduces the CO_(2) storage efficiency after the development of coalbed methane.The generation and migration of coal fines causes blockages in the fractures in the stage of drainage and gas production,reducing the gas channeling effect of injected CO_(2) caused by the heterogeneity of the coal seam.To explore the impact of coal fines within coal seam fractures on the efficacy of CO_(2) storage,experiments on the production stage and CO_(2) injection for storage were conducted on coal combinations containing propped fractures,fractures,and matrix.The CO_(2) storage characteristics of coal at the constraint of coal fines,as well as the influence of multiple rounds of intermittent CO_(2) injection and different injection parameters on the CO_(2) storage effect,were analyzed.The research results show that blockage by coal fines increases the resistance to fluid flow in the fractures by 71.2%.The CO_(2) storage capacity and storage potential of coal with coal fines are 6.5 cm^(3)/g and 8.8%higher than those of coal without coal fines,while the CO_(2) storage capacity of fractured coal under the influence of coal fines has the largest increase of 9.4 cm^(3)/g.The CO_(2) storage of coal containing coal fines is significantly higher(6.6%)than that of the coal without coal fines.The CO_(2) storage effect of the coal with coal fines is improved with the increase in injection rate,whereas the CO_(2) storage effect of the coal without coal fines decreases significantly(by 7.8%).Multiple rounds of intermittent injection increases the CO_(2) storage volume of coal by 20.4%(with coal fines)and 17.1%(without coal fines).The presence of coal fines in fractures also slows down the downward trend of CO_(2) storage fraction after multiple rounds of CO_(2) injection.The blockage in fractures significantly increases the CO_(2) injection time and difficulty,but can increase the CO_(2) storage fraction by 4.7%-17.1%,and the storage volume by 1.9%-14%,increasing the feasibility of CO_(2) storage in fractured coal seams that have previously been exploited for methane production.The multiple rounds of intermittent CO_(2) injection and shut-in periods has shown potential for greater CO_(2) storage and injection efficiency. 展开更多
关键词 Coal seam FRACTURES Coal fines BLOCKAGE CO_(2)storage Injection parameters
原文传递
Mechanism of rock burst vertical damage induced by layered crack structures of the steeply inclined extremely thick coal seams
11
作者 Taoping Zhong Zhenlei Li +6 位作者 Dazhao Song Majid Khan Xueqiu He Zemin Chen Chao Zhou Xudong Liu Panfei Feng 《International Journal of Coal Science & Technology》 2025年第2期123-144,共22页
This study focuses on steeply inclined and extremely thick coal seams(SIETCS)characterized by immense thickness,a steep inclination of coal seams(87°),and high horizontal stress.The geological conditions and mini... This study focuses on steeply inclined and extremely thick coal seams(SIETCS)characterized by immense thickness,a steep inclination of coal seams(87°),and high horizontal stress.The geological conditions and mining technology associated with SIETCS differ significantly from those of generally inclined coal seams,resulting in notable variations in roadway stress distributions.On SIETCS have predominantly examined the impact of rock layers flanking coal seams on rock bursts,with limited emphasis on SIETCS roadways.This study employs comprehensive methods,integrating numerical simulations,theoretical analyses,and field detections to investigate the stress distribution of SIETCS and the mechanisms of rock burst-induced vertical damage,subsequently validated in situ.The vertical stress in SIETCS is minimal,while horizontal stress is concentrated,leading to the formation of layered crack structures(LCS)that distribute above and below the roadways.Additionally,elastic energy significantly concentrates within the LCS.Axial dynamic compressive stress and vertical dynamic tensile stress along the LCS diminish its stability,readily triggering failure.During the LCS failure process,the stored energy is released,converting into kinetic energy required for coal body ejection after reaching the minimum energy for failure and dissipative energy,ultimately leading to rock burst-induced vertical damage in roadways.On-site detection and analysis within SIETCS,along with historical rock burst data,confirm the existence of LCS and its role in inducing vertical rock burst damage.This research establishes essential foundations for preventing rock bursts within SIETCS. 展开更多
关键词 Steeply inclined and extremely thick coal seams Rock burst Layered crack structures Dynamic stress Energy release
在线阅读 下载PDF
Optimized positioning and cross-layer control for roadways beneath residual coal pillars in extremely close-distance coal seams
12
作者 WANG Yuxuan XIE Shengrong +2 位作者 WU Yiyi LIU Chenyang WANG Zhigen 《Journal of Mountain Science》 2025年第10期3850-3868,共19页
In extremely close-distance coal seam(ECDCS)mining,section coal pillars remain after upper coal seam(UCS)extraction.Thus,for layout and support design of lower coal seam(LCS)mining roadways,it is critical to account f... In extremely close-distance coal seam(ECDCS)mining,section coal pillars remain after upper coal seam(UCS)extraction.Thus,for layout and support design of lower coal seam(LCS)mining roadways,it is critical to account for UCS goaf deterioration and residual coal pillar(RCP)-induced stress disturbance.Taking the 6.4 m layer spacing of ECDCS mining in Nanyangpo Coal Mine as a case study,this research aimed to determine the optimal layout and surrounding rock control method for the 24202-ventilation roadway in the RCP area.First,the challenges of roadway layout and support under RCP were clarified:three layout methods face distinct RCPinduced stress disturbances and goaf-related roof damage.A finite element model was established;the second invariant of deviatoric stress(J_(2))and horizontal stress index were introduced to analyze plastic zone and stress evolution after UCS mining.Results show that J_(2)distributes symmetrically,with its peak diffusing downward and attenuating in a“/”-shaped pattern.Six schemes were simulated to compare plastic zone distributions at different positions,revealing that the optimal layout consists of a roadway alignment with the RCP center.Based on roadway layout and roof conditions,a cooperative control scheme was proposed:deep,strong anchorage with long cables across the RCP,and shallow stable support with short bolts in the ECDCS.This scheme secures roof cables anchored to the UCS RCP roof to achieve cross-seam anchorage.On-site borehole peeping and loose circle tests confirm smooth surrounding rock hole walls and limited failure range.Specifically,surrounding rock deformation and roof separation were controlled within 200 mm and 80 mm,respectively,with stable bolt/cable support resistance.These results offer an innovative solution for roadway layout design and support strategies under RCP in ECDCS,with significant engineering application value. 展开更多
关键词 Extremely close-distance coal seams Residual coal pillar Roadway layout Numerical simulation Surrounding rock control Field observation
原文传递
Application research of SSA-RF model in predicting the height of water-conducting fracture zone in deep and thick coal seams
13
作者 Li Wang Jiming Zhu Zhongchang Wang 《Artificial Intelligence in Geosciences》 2025年第2期250-262,共13页
The 91 measured values of the development height of the water-conducting fracture zone(WCFZ)in deep and thick coal seam mining faces under thick loose layer conditions were collected.Five key characteristic variables ... The 91 measured values of the development height of the water-conducting fracture zone(WCFZ)in deep and thick coal seam mining faces under thick loose layer conditions were collected.Five key characteristic variables influencing the WCFZ height were identified.After removing outliers from the dataset,a Random Forest(RF)regression model optimized by the Sparrow Search Algorithm(SSA)was constructed.The hyperparameters of the RF model were iteratively optimized by minimizing the Out-of-Bag(OOB)error,resulting in the rapid deter-mination of optimal parameters.Specifically,the SSA-RF model achieved an OOB error of 0.148,with 20 de-cision trees,a maximum depth of 8,a minimum split sample size of 2,and a minimum leaf node sample size of 1.Cross-validation experiments were performed using the trained optimal model and compared against other prediction methods.The results showed that the mining height had the most significant correlation with the development height of the WCFZ.The SSA-RF model outperformed all other models,with R2 values exceeding 0.9 across the training,validation,and test datasets.Compared to other models,the SSA-RF model demonstrates a simpler structure,stronger fitting capacity,higher predictive accuracy,and superior stability and generaliza-tion ability.It also exhibits the smallest variation in relative error across datasets,indicating excellent adapt-ability to different data conditions.Furthermore,a numerical model was developed using the hydrogeological data from the 1305 working face at Wanfukou Coal Mine,Shandong Province,China,to simulate the dynamic development of the WCFZ during mining.The SSA-RF model predicted the WCFZ height to be 69.7 m,closely aligning with the PFC2D simulation result of 65 m,with an error of less than 5%.Compared to traditional methods and numerical simulations,the SSA-RF model provides more accurate predictions,showing only a 7.23% deviation from the PFC2D simulation,while traditional empirical formulas yield deviations as large as 19.97%.These results demonstrate the SSA-RF model’s superior predictive capability,reinforcing its reliability and engineering applicability for real-world mining operations.This model holds significant potential for enhancing mining safety and optimizing planning processes,offering a more accurate and efficient approach for WCFZ height prediction. 展开更多
关键词 Deep and thick coal seams Water-conducting fracture zone Out-of-bag error Hyperparameter optimization CS-RF prediction model Cross-validation Violin plot
在线阅读 下载PDF
Theory and technology of enhanced coal seam gas production by integrated drilling,hydraulic punching and fracturing in coal mine:Part 2 technology
14
作者 Shiyao Yu Xianbo Su +2 位作者 Jinxing Song Qian Wang Zhenjiang You 《International Journal of Coal Science & Technology》 2025年第4期121-132,共12页
To enhance the efficiency and cost-effectiveness of coal seam gas extraction in coal mines,this study introduces an integrated approach combining drilling,hydraulic punching,and fracturing technologies.This method opt... To enhance the efficiency and cost-effectiveness of coal seam gas extraction in coal mines,this study introduces an integrated approach combining drilling,hydraulic punching,and fracturing technologies.This method optimizes drilling media tailored to specific coal seams and fine-tunes technical parameters during drilling and permeability improvement processes.Furthermore,it clarifies the relationships among the coal breaking rate,discharge of drill cuttings,jet velocity,rotation speed,and displacement.This ensures precise and effective permeability improvement in both soft and hard coal formations.To implement this technology,a set of high-performance drilling tool with a large inner diameter,high pressure resistance,and superior sealing capabilities has been developed.Consisting of a water braid,drill pipe and hydraulic ejector,this tool meets the requirements of substantial displacement and high pump pressure.Field test results demonstrate remarkable enhancements in borehole formation,coal breaking and slagging efficiency.Specifically,the operation time is reduced by 60%–80%,the coal output is increased by 1–1.5 times,the pure coal seam gas extraction yield is increased by 1–2 times,and the extraction radius expands by more than 100%.These results highlight significant advancements in operational efficiency and permeability improvement effects,paving the way for efficient and economical coal seam gas extraction practices. 展开更多
关键词 Integrated drilling Punching and fracturing Coal seam gas extraction High pressure tight drilling tool Permeability improvement
在线阅读 下载PDF
Quantitative characterization of the multiscale mechanical properties of low‑permeability sandstone roofs of coal seams based on nanoindentation and triaxial tests and its implications for CO_(2) geological sequestration
15
作者 Feng Cao Jianhua He +5 位作者 Hongxiu Cao Hucheng Deng Andrew D.La Croix Rui Jiang Ruixue Li Jiarun Li 《International Journal of Coal Science & Technology》 2025年第1期125-151,共27页
Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2... Microstructural heterogeneity of low-permeability sandstone roofs of deep unmineable coal seams due to diagenesis significantly affects rock mechanical behavior,greatly impacting the sealing potential of in situ CO_(2) sequestration and the structural stability of the geological formation.However,little is known about how the microstructure of different mineral groups influences the multiscale mechanical behavior of deep sandstone.This study proposes a new method for quantitatively characterizing the multiscale mechanical properties of low-permeability sandstone and shows the mechanisms responsible for mechanical failure at the micro-,meso-,and macroscale.Triaxial compression tests and targeted nanoindentation tests were conducted to assess the micro-and macroscale mechanical properties of different types of sandstone.The micro-and macroscale experiments were coupled with numerical simulations of compression using a unified cohesive model based on Voronoi polygons to clarify the multiscale mechanical behavior.The results indicate that quartz,the primary mineral component of the sandstones examined,exhibits the strongest micromechanical properties,followed by feldspar,calcite,and clay minerals.Compared to polycrystalline quartz,monocrystalline quartz has a more stable microstructure and is mechanically stronger.The macro-mechanical properties of tight sandstone samples are weakened by increased microstructural inhomogeneity and larger grain size.This leads to a higher likelihood of splitting damage,characterized by a high degree of discrete and weak stress sensitivity.The major conclusion is that the positive rhythm lithofacies of medium-grained sandstone to siltstone are the most favorable for efficient CO_(2) sequestration in deep unmineable coal seams. 展开更多
关键词 Low-permeability sandstone roofs of coal seams Triaxial test Nanoindentation test Mechanical properties Fracture mechanical behavior CO_(2)sequestration
在线阅读 下载PDF
A novel control method of automatically formed roadway by roof cutting and confined concrete column in extremely close-distance coal seam
16
作者 XUE Hao-jie WANG Qi +4 位作者 ZHANG Chong HE Man-chao ZHANG Bo-wen ZHANG Shu WANG Ye-tai 《Journal of Central South University》 2025年第10期3911-3926,共16页
Under the influence of the upper coal pillars and dynamic pressure of coal mining,the roadway of the lower coal seam is prone to large deformation failure.In this paper,a novel control method and key technologies of a... Under the influence of the upper coal pillars and dynamic pressure of coal mining,the roadway of the lower coal seam is prone to large deformation failure.In this paper,a novel control method and key technologies of automatically formed roadway(AFR)by roof cutting and confined concrete column in extremely close-distance coal seam are proposed.Furthermore,a numerical model is established to analyze the structure characteristics of overlying roof strata.Based on numerical results,the roof structure model of“voussoir beam of upper layer+short cantilever beam of lower layer”of this method is proposed.What’s more,the calculation equation of the roof bending moment and evaluation indexes is established,and the influence of different factors on roof stability control of AFR is studied.Finally,a field test is conducted to verify the effectiveness of this novel method.Field results were as follows:1)The maximum and average support stress of working face obviously decreased;2)The confined concrete column can provide high-strength support in dynamic influence zone;3)The maximum deformation of AFR safety requirement can be met.This study can provide effective guidance for the application of this method in extremely close-distance coal seam. 展开更多
关键词 extremely close-distance coal seam automatically formed roadway(AFR) confined concrete column numerical simulation roof structure model field test
在线阅读 下载PDF
Enhanced permeability mechanism in coal seams through liquid nitrogen immersion:multi-scale pore structure analysis
17
作者 LI Xue-long CHEN De-you +5 位作者 LIU Shu-min WANG Deng-ke SUN Hai-tao YIN Da-wei ZHANG Yong-gang GONG Bin 《Journal of Central South University》 2025年第7期2732-2749,共18页
The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for e... The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for efficient extraction.This study systematically investigates the impact of liquid nitrogen immersion(LNI)on the coal’s pore structure and its mechanism of enhancing permeability with a combination of quantitative nuclear magnetic resonance(NMR)analysis,nitrogen adsorption experiments,and fractal dimension calculations.The results demonstrate that LNI can damage the coal’s pore structure and promote fracture expansion through thermal stress induction and moisture phase transformation,thereby enhancing the permeability of coal seams.The T_(2)peak area in the NMR experiments on coal samples subjected to LNI treatment shows a significant increase,the Brunauer-Emmett-Teller(BET)specific surface area decreases to 6.02 m^(2)/g,and the Barrett-Joyner-Halenda(BJH)total pore volume increases to 14.99 mm^(3)/g.Furthermore,changes in fractal dimensions(D_(1)rising from 2.804 to 2.837,and D_(2)falling from 2.757 to 2.594)indicate a notable enhancement in the complexity of the pore structure.With increasing LNI cycles,the adsorption capacity of the coal samples diminishes,suggesting a significant optimization of the pore structure.This optimization is particularly evident in the reconstruction of the micropore structure,which in turn greatly enhances the complexity and connectivity of the sample’s pore network.In summary,the study concludes that LNI technology can effectively improve the permeability of coal seams and the extraction efficiency of coalbed methane by optimizing the micropore structure and enhancing pore connectivity,which offers a potential method for enhancing the permeability of gas-bearing coal seams and facilitating the development and utilization of coalbed methane. 展开更多
关键词 liquid nitrogen immersion(LNI) coal seam pore structure PERMEABILITY nuclear magnetic resonance(NMR) fractal dimension
在线阅读 下载PDF
Theory and technology of enhanced coal seam gas production by integrated drilling,punching and fracturing in coal mine:Part 1 theory
18
作者 Shiyao Yu Xianbo Su +2 位作者 Jinxing Song Qian Wang Zhenjiang You 《International Journal of Coal Science & Technology》 2025年第4期106-120,共15页
Coal seams in China are typically characterized by high coal seam gas content and low permeability,posing challenges for efficient coal seam gas extraction.However,achieving successful boreholes,especially in soft coa... Coal seams in China are typically characterized by high coal seam gas content and low permeability,posing challenges for efficient coal seam gas extraction.However,achieving successful boreholes,especially in soft coal formations,remains a challenge.The mechanisms underlying permeability improvement in different coal structures need further exploration.Therefore,this paper is focused on the fundamental principles of permeability improvement in soft coal through hydraulic punching,and in hard coal via hydraulic jet fracturing.Firstly,borehole instability results from a dynamic interplay of four factors:in situ stress,coal structure,mechanical properties of coal with fluid,and drilling technology.While borehole instability is inevitable,enhancing drilling tools,drilling media,and drilling processes can mitigate risks associated with buried and stuck drill pipes by ensuring effective discharge of drill cuttings through critical flow velocity and displacement.Secondly,permeability improvement in soft coal through hydraulic punching aims at pressure relief and capacity increase,while in hard coal,hydraulic jet fracturing induces crack formation within the coal seam.Finally,this study illustrates the dynamics of the granular arch in soft coal after hydraulic punching,shedding light on the complex processes involved. 展开更多
关键词 Coal seam gas extraction Integrated drilling punching and fracturing Borehole instability Permeability improvement Hydraulic punching Hydraulic jet fracturing
在线阅读 下载PDF
Study on Fabric and Seam Strength Loss of Denim Trousers for Different Washing Treatments
19
作者 Mohammad Rafiqur Rashid Mohammad Faizur Rahman 《Journal of Textile Science and Technology》 2020年第3期114-122,共9页
This paper shows that fabric and seam strength loss (%) of the selected denim trousers occurred for different washing applications. At first, a commonly used denim fabric of 12.5 Oz/yd<sup>2</sup> was sele... This paper shows that fabric and seam strength loss (%) of the selected denim trousers occurred for different washing applications. At first, a commonly used denim fabric of 12.5 Oz/yd<sup>2</sup> was selected to make the trousers containing two types of seam <em>i.e.</em> superimposed and lapped seam. Then bleach, enzyme and acid wash were applied on the produced trousers and fabric & seam strength loss were determined by using related standard and equipment. It was found that fabric strength loss is higher in case of acid wash and the loss of seam strength is higher in case of enzyme wash. 展开更多
关键词 Fabric Strength Superimposed seam Lapped seam seam Strength Denim Trousers
在线阅读 下载PDF
SEAM改性沥青流变特性 被引量:8
20
作者 郑传峰 佴磊 +3 位作者 张力 孙振合 付极 许雅智 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第5期1284-1289,共6页
采用动态剪切流变试验测试了沥青胶浆在原始状态、旋转薄膜老化状态及压力老化状态下的复数模量、相位角、车辙因子、疲劳因子。采用弯曲梁流变试验测试了沥青胶浆的蠕变劲度及蠕变劲度变化率。结果表明,长期老化后,改性剂质量分数为10%... 采用动态剪切流变试验测试了沥青胶浆在原始状态、旋转薄膜老化状态及压力老化状态下的复数模量、相位角、车辙因子、疲劳因子。采用弯曲梁流变试验测试了沥青胶浆的蠕变劲度及蠕变劲度变化率。结果表明,长期老化后,改性剂质量分数为10%的SEAM改性沥青车辙因子显著增强,且疲劳因子满足SHRP沥青胶结料规范。随着改性剂含量的增加,沥青蠕变劲度增加,蠕变劲度变化率降低。综合分析上述各项流变指标可知,SEAM改性剂对沥青流变特性影响显著,适当含量(质量分数为10%)的SEAM改性剂可以有效改善沥青流变效果,而高含量(质量分数为20%以上)的SEAM改性剂会使沥青流变效果降低。 展开更多
关键词 道路工程 seam改性沥青 流变特性 动态剪切流变仪 弯曲梁流变仪 对比试验
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部