期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于深度SE-DenseNet的航班延误预测模型 被引量:35
1
作者 吴仁彪 赵婷 屈景怡 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1510-1517,共8页
针对目前民航运输业对航班延误高精度预测的需求,该文提出一种基于深度SE-DenseNet的航班延误预测模型。该模型首先将航班信息、相关机场延误信息和天气信息进行数据融合;其次,利用改进后的SEDenseNet算法对融合后的航班数据集进行自动... 针对目前民航运输业对航班延误高精度预测的需求,该文提出一种基于深度SE-DenseNet的航班延误预测模型。该模型首先将航班信息、相关机场延误信息和天气信息进行数据融合;其次,利用改进后的SEDenseNet算法对融合后的航班数据集进行自动特征提取;最后,构建Softmax分类器进行航班离港延误等级的预测。该文提出的SE-DenseNet结构融合了DenseNet和SENet二者的优势,既能加强深层信息的传递,避免梯度消失,又可以实现特征提取过程中的特征重标定。实验结果表明,数据融合后,预测准确率较只考虑航班属性提高约1.8%;算法改进后可以有效提升网络性能,模型最终准确率达93.19%。 展开更多
关键词 航班延误预测 se-densenet 数据融合 特征重标定
在线阅读 下载PDF
基于Densenet模型的步态相位识别研究 被引量:2
2
作者 付明凯 王少红 马超 《电子测量技术》 北大核心 2025年第1期119-128,共10页
步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位... 步态识别是下肢外骨骼机器人的关键技术,精准地步态识别对下肢外骨骼机器人的柔性控制具有重要作用。为解决不同个体以及同一个体步态特征(步速、步幅等)的随机性,本文提出了一种基于Densenet改进的SECBAM-Densenet网络模型的步态相位识别方法。首先,将两个惯性测量单元布置在胫骨前部和大腿前侧的股直肌,采集了200人次受试者前进、转弯、上楼梯、下楼梯4种步态任务的步态数据。然后,对数据进行滤波重采样预处理后作为所提模型的输入。最后,利用SECBAM-Densenet模型得到输出模型的分类结果。结果显示,改进后SECBAM-Densenet模型在同一个体中不同步态相位平均识别准确率达到了95.76%,相比其他模型有0.66%~21.22%的提升。在不同个体中,相位的识别准确率均高于94%。以上试验结果表明,本文提出的模型可以应用于步态相位识别领域,并为下肢外骨骼机器人的柔性控制提供了试验参考。 展开更多
关键词 步态相位 Densenet SE-net注意力模块 空间通道注意力模块
原文传递
基于卷积神经网络的衍射图空间群识别研究
3
作者 石竞琛 王文杰 +1 位作者 刘霏凝 赵瑞 《白城师范学院学报》 2023年第2期7-13,共7页
X射线衍射(XRD)图谱数据的采集和分析是新材料开发周期中必不可少的步骤之一,常规实验表征很难实现大批量的测试和快速鉴别.文章基于DenseNet设计了一个衍射图空间群识别的神经网络模型SE-DenseNet.SE-Dense Net在简化了网络结构的同时... X射线衍射(XRD)图谱数据的采集和分析是新材料开发周期中必不可少的步骤之一,常规实验表征很难实现大批量的测试和快速鉴别.文章基于DenseNet设计了一个衍射图空间群识别的神经网络模型SE-DenseNet.SE-Dense Net在简化了网络结构的同时,通过增加注意力机制(Squeeze and Excitation,SE),并采用新的激活函数来提高网络模型的性能.研究表明,在具有32337个样本包含20类空间群的数据集上,SE-Dense Net的准确率为81.73%,较基础对照模型提高了4.9%.研究发现,尽管数据集的不平衡性是限制神经网络模型预测准确度的主要原因之一,但SE-DenseNet的性能足以在短时间对大量衍射图数据产生准确的预测,并提供有意义的参考. 展开更多
关键词 卷积神经网络 se-densenet X射线衍射图 空间群 识别
在线阅读 下载PDF
Physiological-physical feature fusion for automatic voice spoofing detection
4
作者 Junxiao XUE Hao ZHOU 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第2期157-166,共10页
Biometric speech recognition systems are often subject to various spoofing attacks,the most common of which are speech synthesis and speech conversion attacks.These spoofing attacks can cause the biometric speech reco... Biometric speech recognition systems are often subject to various spoofing attacks,the most common of which are speech synthesis and speech conversion attacks.These spoofing attacks can cause the biometric speech recognition system to incorrectly accept these spoofing attacks,which can compromise the security of this system.Researchers have made many efforts to address this problem,and the existing studies have used the physical features of speech to identify spoofing attacks.However,recent studies have shown that speech contains a large number of physiological features related to the human face.For example,we can determine the speaker's gender,age,mouth shape,and other information by voice.Inspired by the above researches,we propose a spoofing attack recognition method based on physiological-physical features fusion.This method involves feature extraction,a densely connected convolutional neural network with squeeze and excitation block(SE-DenseNet),and feature fusion strategies.We first extract physiological features in audio from a pretrained convolutional network.Then we use SE-DenseNet to extract physical features.Such a dense connection pattern has high parameter efficiency,and squeeze and excitation blocks can enhance the transmission of the feature.Finally,we integrate the two features into the classification network to identify the spoofing attacks.Experimental results on the ASVspoof 2019 data set show that our model is effective for voice spoofing detection.In the logical access scenario,our model improves the tandem decision cost function and equal error rate scores by 5%and 7%,respectively,compared to existing methods. 展开更多
关键词 spoofing attacks se-densenet physiological feature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部