To meet the growing needs of flexible and wearable electronics,stretchable energy storage devices—especially supercapacitors(SCs)—have become a key focus in advanced energy storage research.However,achieving both me...To meet the growing needs of flexible and wearable electronics,stretchable energy storage devices—especially supercapacitors(SCs)—have become a key focus in advanced energy storage research.However,achieving both mechanical stretchability and high capacitance in SC still faces great challenges,and the crucial factors lie in creating superior electrode materials that exhibit high electrochemical performance as well as excellent mechanical stretchability.Covalent organic frameworks(COFs)possess considerable potential as electrode materials for SCs by virtue of stable organic frameworks,open channels and designable functional groups.Nevertheless,their applications in flexible SCs are greatly hindered by their rigid characteristics.Here a novel COFs@conductive polymer hydrogels(CPHs)@poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)complexes,which integrate the pseudocapacitance of PDITAPA COF,mechanical stretchability of hydrogels and high conductivity of PEDOT:PSS,has been developed as stretchable electrode of SCs.Physically cross-linked PEDOT nanofibers,with their interlinked and entangled architecture,collectively boost mechanical,electrical,and electrochemical performance.The COFs@CPHs@PEDOT:PSS simultaneously demonstrates outstanding mechanical stretchability,high electrical behaviors,and superior swelling characteristics.The resulting SC exhibits advantages of simple structures,facile assembly processes,high specific capacitance,excellent cycling stability,and arbitrary deformation,which holds great application prospects for wearable electronic products.Owing to its uncomplicated structure,ease of production,high energy storage capacity,robust cycling performance,and adaptability to deformation,this fabricated SC is well-suited for next-generation wearable technologies.展开更多
Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-...Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-scale preparation of the“integrated”phosphorus-based precatalyst(FeP-NiP)on nickel foam(NF),which is in situ reconstructed into a highly active and corrosion-resistant(Fe)NiOOH phase for OER.The interaction between phosphate anions(PO_(x)^(y-))and iron ions(Fe^(3+))tunes the electronic structure of the catalytic phase to further enhance OER kinetics.The integrated FeP-NiP@NF electrode exhibits low overpotentials for OER in alkaline water/seawater,requiring only 275/289,320/336,and 349/358 mV to reach 0.1,0.5,and 1.0 A cm^(−2),respectively.The in situ reconstructed PO_(x)^(y-)anion electrostatically repels Cl−in seawater electrolytes,allowing stable operation for over 7 days at 1.0 A cm^(−2) in extreme electrolytes(1.0 M KOH+seawater and 6.0 M KOH+seawater),demonstrating industrial-level stability.This study overcomes the complex synthesis limitations of P-based materials through innovative material design,opening new avenues for electrochemical energy conversion.展开更多
In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past...In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.展开更多
Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-sec...Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.展开更多
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as wel...To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.展开更多
Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based elect...Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.展开更多
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno...With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(...Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF),and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs.The HE-LSCF air electrode exhibits excellent oxygen reduction reac-tion(ORR)activity with a low polarization resistance of 0.042Ω·cm^(2)at 700℃,which is much lower than that of La0.6Sr0.4Co_(0.8)Fe_(0.2)O_(3−δ)(LSCF),indicating the excellent catalytic activity of HE-LSCF.Meanwhile,the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm^(−2)in the fuel cell mode and a promising electrolysis current density of−0.52 A·cm^(−2)at 1.5 V in the electrolysis mode with H_(2)(~10%H_(2)O)atmosphere at 700℃.More importantly,the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test.Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs.展开更多
In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this stu...In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.展开更多
All-solid-state batteries(ASSBs)are a promising next-generation energy storage solution due to their high energy density and enhanced safety.To achieve this,specialized electrode designs are required to efficiently en...All-solid-state batteries(ASSBs)are a promising next-generation energy storage solution due to their high energy density and enhanced safety.To achieve this,specialized electrode designs are required to efficiently enhance interparticle lithium-ion transport between solid components.In particular,for active materials with high specific capacity,such as silicon,their volume expansion and shrinkage must be carefully controlled to maintain mechanical interface stability,which is crucial for effective lithium-ion transport in ASSBs.Herein,we propose a mechanical stress-tolerant all-solid-state graphite/silicon electrode design to ensure stable lithium-ion diffusion at the interface through morphology control of active material particles.Plate-type graphite with a high surface-area-to-volume ratio is used to maximize the dispersion of silicon within the electrode.The carefully designed electrode can accommodate the volume changes of silicon,ensuring stable capacity retention over cycles.Additionally,spherical graphite is shown to contribute to improved rate performance by providing an efficient lithium-ion diffusion pathway within the electrode.Therefore,the synergistic effect of our electrode structure offers balanced electrochemical performance,providing practical insights into the mechano-electrochemical interactions essential for designing highperformance all-solid-state electrodes.展开更多
The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l...The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.展开更多
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were succ...Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting.展开更多
The silicon-graphite(Si-C)composite electrode is considered a promising candidate for next-generation commercial electrodes due to its high capacity.However,lithium-ion batteries with silicon electrodes often experien...The silicon-graphite(Si-C)composite electrode is considered a promising candidate for next-generation commercial electrodes due to its high capacity.However,lithium-ion batteries with silicon electrodes often experience capacity fading and poor cyclic performance,primarily due to the mechanical degradation of the solid-electrolyte interphase(SEI).In this work,we present a homogenized constitutive model for Si-C composite electrodes under finite deformation,incorporating lithium-ion concentration-dependent properties.We perform a wrinkling analysis and systematically examine the influence of key parameters,such as modulus and thickness ratios,on the critical conditions for instability.Additionally,we investigate the ratcheting effect across varying silicon contents.Our findings reveal that maintaining the silicon content within an optimal range effectively reduces plastic accumulation during charge–discharge cycles.These insights provide crucial guidance for optimizing the design and fabrication of Si–C electrode systems,enhancing their durability and performance.展开更多
A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion proce...A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion process of resonant ultrasound spectroscopy technology.Elastic matrix,which is sensitive to the resonance spectrum,is obtained by resonant ultrasound spectroscopy.Piezoelectric and dielectric matrices,which are sensitive to the capacitance of driving electrodes,are determined by capacitance inversion.The initial values of elastic constants are deviated by 30%to validate the reliability of this method.The relative errors between measured and inversed values of resonant frequencies are less than 1%and the relative errors of the capacitance are mostly less than 5%.The work has extensive applications in piezoelectric materials characterization.展开更多
Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its wor...Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect.展开更多
Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fi...Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.展开更多
An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique...An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.展开更多
Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high cond...Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.展开更多
基金granted by the National Natural Science Foundation of China(Nos.52533008,21835003,62274097,and 62004106)National Key Research and Development Program of China(Nos.2024YFB3612500,2024YFB3612600,and 2023YFB3608900)+2 种基金Basic Research Program of Jiangsu Province(No.BK20243057)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX25_1213)the Natural Science Foundation of Nanjing Universityof Posts and Telecommunications(No.NY225135).
文摘To meet the growing needs of flexible and wearable electronics,stretchable energy storage devices—especially supercapacitors(SCs)—have become a key focus in advanced energy storage research.However,achieving both mechanical stretchability and high capacitance in SC still faces great challenges,and the crucial factors lie in creating superior electrode materials that exhibit high electrochemical performance as well as excellent mechanical stretchability.Covalent organic frameworks(COFs)possess considerable potential as electrode materials for SCs by virtue of stable organic frameworks,open channels and designable functional groups.Nevertheless,their applications in flexible SCs are greatly hindered by their rigid characteristics.Here a novel COFs@conductive polymer hydrogels(CPHs)@poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)complexes,which integrate the pseudocapacitance of PDITAPA COF,mechanical stretchability of hydrogels and high conductivity of PEDOT:PSS,has been developed as stretchable electrode of SCs.Physically cross-linked PEDOT nanofibers,with their interlinked and entangled architecture,collectively boost mechanical,electrical,and electrochemical performance.The COFs@CPHs@PEDOT:PSS simultaneously demonstrates outstanding mechanical stretchability,high electrical behaviors,and superior swelling characteristics.The resulting SC exhibits advantages of simple structures,facile assembly processes,high specific capacitance,excellent cycling stability,and arbitrary deformation,which holds great application prospects for wearable electronic products.Owing to its uncomplicated structure,ease of production,high energy storage capacity,robust cycling performance,and adaptability to deformation,this fabricated SC is well-suited for next-generation wearable technologies.
基金funding support from Natural Science Foundation of Shanghai(Grant No.23ZR1443900)the National Natural Science Foundation of China(Grant Nos.22178309,22476131 and 22176127)。
文摘Economical,stable,and corrosion-resistant catalytic electrodes are still urgently needed for the oxygen evolution reaction(OER)in water and seawater.Herein,a mild electroless plating strategy is used to achieve large-scale preparation of the“integrated”phosphorus-based precatalyst(FeP-NiP)on nickel foam(NF),which is in situ reconstructed into a highly active and corrosion-resistant(Fe)NiOOH phase for OER.The interaction between phosphate anions(PO_(x)^(y-))and iron ions(Fe^(3+))tunes the electronic structure of the catalytic phase to further enhance OER kinetics.The integrated FeP-NiP@NF electrode exhibits low overpotentials for OER in alkaline water/seawater,requiring only 275/289,320/336,and 349/358 mV to reach 0.1,0.5,and 1.0 A cm^(−2),respectively.The in situ reconstructed PO_(x)^(y-)anion electrostatically repels Cl−in seawater electrolytes,allowing stable operation for over 7 days at 1.0 A cm^(−2) in extreme electrolytes(1.0 M KOH+seawater and 6.0 M KOH+seawater),demonstrating industrial-level stability.This study overcomes the complex synthesis limitations of P-based materials through innovative material design,opening new avenues for electrochemical energy conversion.
基金supported by the Beijing Natural Science Foundation(No.QY24166).
文摘In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.
基金the National Key R&D Program of China(No.2021YFA1501503)the National Natural Science Foundation of China(Nos.22250008,22121004,22108197)+3 种基金the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202107)the Natural Science Foundation of Tianjin City(No.21JCZXJC00060)the Program of Introducing Talents of Discipline to Universities(No.BP0618007)the Xplorer Prize for financial support。
文摘Membrane electrode assembly(MEA)is widely considered to be the most promising type of electrolyzer for the practical application of electrochemical CO_(2) reduction reaction(CO_(2)RR).In MEAs,a square-shaped cross-section in the flow channel is normally adopted,the configuration optimization of which could potentially enhance the performance of the electrolyzer.This paper describes the numerical simulation study on the impact of the flow-channel cross-section shapes in the MEA electrolyzer for CO_(2)RR.The results show that wide flow channels with low heights are beneficial to the CO_(2)RR by providing a uniform flow field of CO_(2),especially at high current densities.Moreover,the larger the electrolyzer,the more significant the effect is.This study provides a theoretical basis for the design of high-performance MEA electrolyzers for CO_(2)RR.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021M3H4A1A02048529)the Ministry of Trade,Industry and Energy(MOTIE)of the Korean government under grant No.RS-2022-00155854support from the DGIST Supercomputing and Big Data Center.
文摘To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering.
基金funded by the Joint Fund for Regional Innovation and Development of National Natural Science Foundation of China(U21A20143)the National Science Fund for Excellent Young Scholars(52322607)the Excellent Youth Foundation of Heilongjiang Scientific Committee(YQ2022E028)。
文摘Improving the volumetric energy density of supercapacitors is essential for practical applications,which highly relies on the dense storage of ions in carbon-based electrodes.The functional units of carbon-based electrode exhibit multi-scale structural characteristics including macroscopic electrode morphologies,mesoscopic microcrystals and pores,and microscopic defects and dopants in the carbon basal plane.Therefore,the ordered combination of multi-scale structures of carbon electrode is crucial for achieving dense energy storage and high volumetric performance by leveraging the functions of various scale structu re.Considering that previous reviews have focused more on the discussion of specific scale structu re of carbon electrodes,this review takes a multi-scale perspective in which recent progresses regarding the structureperformance relationship,underlying mechanism and directional design of carbon-based multi-scale structures including carbon morphology,pore structure,carbon basal plane micro-environment and electrode technology on dense energy storage and volumetric property of supercapacitors are systematically discussed.We analyzed in detail the effects of the morphology,pore,and micro-environment of carbon electrode materials on ion dense storage,summarized the specific effects of different scale structures on volumetric property and recent research progress,and proposed the mutual influence and trade-off relationship between various scale structures.In addition,the challenges and outlooks for improving the dense storage and volumetric performance of carbon-based supercapacitors are analyzed,which can provide feasible technical reference and guidance for the design and manufacture of dense carbon-based electrode materials.
基金supported by the National Natural Science Foundation of China(grant No.52422511,U20A6004)the Guangdong Basic and Applied Basic Research Foundation(grant No.2022B1515120011)Guangzhou Basic and Applied Basic Research Foundation(grant No.2024A04J6362).
文摘With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金support provided by the National Key R&D Program of China(No.2024YFE0101500)the National Natural Science Foundation of China(No.52272257)the Natural Science Foundation of Jiangsu Province(No.BK20240109).
文摘Developing highly active and stable air electrodes remains challenging for reversible solid oxide cells(R-SOCs).Herein,we re-port an A-site high-entropy engineered perovskite oxide,La_(0.2)Pr_(0.2)Nd_(0.2)Ba_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF),and its electrocatalytic activity and stability property are systematically probed for tubular R-SOCs.The HE-LSCF air electrode exhibits excellent oxygen reduction reac-tion(ORR)activity with a low polarization resistance of 0.042Ω·cm^(2)at 700℃,which is much lower than that of La0.6Sr0.4Co_(0.8)Fe_(0.2)O_(3−δ)(LSCF),indicating the excellent catalytic activity of HE-LSCF.Meanwhile,the tubular R-SOCs with HE-LSCF shows a high peak power density of 1.18 W·cm^(−2)in the fuel cell mode and a promising electrolysis current density of−0.52 A·cm^(−2)at 1.5 V in the electrolysis mode with H_(2)(~10%H_(2)O)atmosphere at 700℃.More importantly,the tubular R-SOCs with HE-LSCF shows favorable stability under 180 h reversible cycling test.Our results show the high-entropy design can significantly enhance the activity and robustness of LSCF electrode for tubular R-SOCs.
文摘In order to address the current inability of screen printing to monitor printing pressure online,an online printing pressure monitoring system applied to screen printing machines was designed in this study.In this study,the consistency of printed electrodes was measured by using a confocal microscope and the pressure distribution detected by online pressure monitoring system was compared to investigate the relationship.The results demonstrated the relationship between printing pressure and the consistency of printed electrodes.As printing pressure increases,the ink layer at the corresponding position becomes thicker and that higher printing pressure enhances the consistency of the printed electrodes.The experiment confirms the feasibility of the online pressure monitoring system,which aids in predicting and controlling the consistency of printed electrodes,thereby improving their performance.
基金supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL24011-000)the National Research Foundation of Korea(NRF2022M3J1A1085396)the Technology Innovation Program(RS-2024-00445442)through the Korea Planning&Evaluation Institute of Industrial Technology(KEIT)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘All-solid-state batteries(ASSBs)are a promising next-generation energy storage solution due to their high energy density and enhanced safety.To achieve this,specialized electrode designs are required to efficiently enhance interparticle lithium-ion transport between solid components.In particular,for active materials with high specific capacity,such as silicon,their volume expansion and shrinkage must be carefully controlled to maintain mechanical interface stability,which is crucial for effective lithium-ion transport in ASSBs.Herein,we propose a mechanical stress-tolerant all-solid-state graphite/silicon electrode design to ensure stable lithium-ion diffusion at the interface through morphology control of active material particles.Plate-type graphite with a high surface-area-to-volume ratio is used to maximize the dispersion of silicon within the electrode.The carefully designed electrode can accommodate the volume changes of silicon,ensuring stable capacity retention over cycles.Additionally,spherical graphite is shown to contribute to improved rate performance by providing an efficient lithium-ion diffusion pathway within the electrode.Therefore,the synergistic effect of our electrode structure offers balanced electrochemical performance,providing practical insights into the mechano-electrochemical interactions essential for designing highperformance all-solid-state electrodes.
基金the National Natural Science Foundation of China(42074134,42474152,42374150)CNPC Innovation Found(2024DQ02-0152).
文摘The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
基金supported by the Natural Science Research Project of Jiangsu Higher Education Institutions(No.23KJD150005)the Scientific Research Project of Nanjing Xiaozhuang University(No.2022NXY29).
文摘Developing efficient and stable electrocatalysts has always been the focus of electrochemical research.Here,sea urchin-like nickel-molybdenum bimetallic phosphide nickel-molybdenum alloy(Ni_(4)Mo)and(Ni-Mo-P)were successfully synthesized by hydrothermal,annealing and phosphating methods on nickel foam(NF).The unusual shape of the sea urchin facilitates gas release and mass transfer and increases the interaction between catalysts and electrolytes.The Ni_(4)Mo/NF and Ni-Mo-P/NF electrodes only need overpotentials of 72 and 197 mV to reach 50 mA·cm^(−2) under alkaline conditions for hydrogen evolution reaction and oxygen evolution reaction,respectively.The Ni_(4)Mo/NF and Ni-Mo-P/NF asymmetric electrodes were used as anode and cathode for the overall water splitting,respectively.In 1.0 M KOH,at a voltage of 1.485 V,the electrolytic device generated 50 mA·cm^(−2) current density,maintaining for 24 h without reduction.The labor presents a simple method to synthesize a highly active,low-cost,and strongly durable self-supporting electrode for over-water splitting.
基金supported by the National Natural Science Foundation of China(Grants Nos.12172102 and 12372097)the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022013).
文摘The silicon-graphite(Si-C)composite electrode is considered a promising candidate for next-generation commercial electrodes due to its high capacity.However,lithium-ion batteries with silicon electrodes often experience capacity fading and poor cyclic performance,primarily due to the mechanical degradation of the solid-electrolyte interphase(SEI).In this work,we present a homogenized constitutive model for Si-C composite electrodes under finite deformation,incorporating lithium-ion concentration-dependent properties.We perform a wrinkling analysis and systematically examine the influence of key parameters,such as modulus and thickness ratios,on the critical conditions for instability.Additionally,we investigate the ratcheting effect across varying silicon contents.Our findings reveal that maintaining the silicon content within an optimal range effectively reduces plastic accumulation during charge–discharge cycles.These insights provide crucial guidance for optimizing the design and fabrication of Si–C electrode systems,enhancing their durability and performance.
基金the Professional Technical Service Platform of Shanghai Science and Technology Commission(No.19DZ2291103)。
文摘A novel characterization method for full-matrix constants of PzT-8 piezoceramics based on local electrodes excitation using one sample is proposed to avoid resonant peaks missing and overlapping in the inversion process of resonant ultrasound spectroscopy technology.Elastic matrix,which is sensitive to the resonance spectrum,is obtained by resonant ultrasound spectroscopy.Piezoelectric and dielectric matrices,which are sensitive to the capacitance of driving electrodes,are determined by capacitance inversion.The initial values of elastic constants are deviated by 30%to validate the reliability of this method.The relative errors between measured and inversed values of resonant frequencies are less than 1%and the relative errors of the capacitance are mostly less than 5%.The work has extensive applications in piezoelectric materials characterization.
基金supported by the National Natural Science Foundation of China(Nos.62374035,92263106,12061131009)the Science and Technology Commission of Shanghai Municipality(No.21520712600).
文摘Silver nanowires(Ag NWs)have promising application potential in electronic displays because of their superior flexibility and transparency.Doping Ni in Ag NWs has proven to be an effective strategy to im-prove its work function.However,AgNi NWs-based electrodes suffer from poor electrical conductivity under air exposure due to the low-conductivity NiO generated on its surface.Here,Cu was further doped in AgNi NWs to form AgNiCu NWs and regulate its surface oxide under long-term air exposure.Finally,it is demonstrated that the conductivity of AgNiCu NWs can acquire an improved tolerable tempera-ture(over 240℃)and prolonged high-temperature tolerance time(over 150 min)by finely regulating the doping content Cu,indicating an enhanced air-stable conductivity.The optimized AgNiCu NWs also achieve superior transparent conductivity as pure Ag NWs and high work function as AgNi NWs,which has been successfully applied in constructing an n-type photodiode with an effective rectification effect.
基金supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No 23-CM-AI-08.
文摘Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.
基金supported by the National Natural Science Foundation of China(Nos.22174082,22374085)the Key Research and Development Program of Shandong Province(No.2021ZDSYS30)Qingdao Postdoctoral Innovation Project Funding(No.QDBSH20220201038)。
文摘An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.
基金supported by the National Key Research and Development Program of China(No.2021YFA1401100)the National Natural Science Foundation of China(Nos.61825403 and 61921005)
文摘Flexible electronics is gaining prominence in modern technology,particularly in flexible displays,wearable electronics,and biomedical applications.Electrodes,as core components of flexible electronics,demand high conductivity,flexibility,and stretchability.However,traditional rigid conductive materials often generate interfacial slip with elastic substrates due to mismatched Young's modulus,adversely affecting device performance.Room-temperature liquid metals(LMs),with their high conductivity and stretchability,have emerged as ideal materials for stable and reliable flexible electronic devices.This review discusses the physical,chemical,and biocompatibility properties of LMs.Additionally,LM-based fabrication strategies including patterning and sintering for flexible electrodes are outlined.Applications in implantable medical devices,wearable electronics,and flexible energy storage are illustrated.Finally,the primary challenges and future research directions in LMs are identified.