期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Constraints on the crustal structure beneath the Sinai subplate,SE Mediterranean,from analysis of local and regional travel times
1
作者 Mohamed K.Salah 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第2期213-222,共10页
The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift,the Dead Sea Transform fault,and the Red Sea rift.The upper and lower crustal structur... The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift,the Dead Sea Transform fault,and the Red Sea rift.The upper and lower crustal structures of this tectonically active,rapidly developing region are yet poorly understood because of many limitations.For this reason,a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network(ENSN) from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai.Because the velocity model used for routine earthquake location by ENSN is one-dimensional,the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures.Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west.The crustal V_P/V_S ratio is 1.74 from shallow(depth≤10 km) earthquakes and 1.76 from deeper(depth 〉 10 km) crustal events.The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model(PREM),implying that the seismic stations are located above widely distributed,tectonically-induced low-velocity zones.These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures.The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities,which should be excluded from major future development projects and large constructions in central and southern Sinai. 展开更多
关键词 Crustal structure Sinai Peninsula se Mediterranean seismicity Travel-time residuals(TTRs) Crustal V_P/V_S ratio
在线阅读 下载PDF
Recent progress in Li-S and Li-Se batteries 被引量:15
2
作者 Lin-Chao Zeng Wei-Han Li +1 位作者 Yu Jiang Yan Yu 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期339-364,共26页
Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batter... Li–S and Li–Se batteries have attracted tremendous attention during the past several decades, as the energy density of Li–S and Li–Se batteries is high(several times higher than that of traditional Li-ion batteries).Besides, Li–S and Li–Se batteries are low cost and environmental benign. However, the commercial applications of Li–S and Li–Se batteries are hindered by the dissolution and shuttle phenomena of polysulfide(polyselenium), the low conductivity of S(Se), etc. To overcome these drawbacks, scientists have come up with various methods, such as optimizing the electrolyte, synthesizing composite electrode of S/polymer, S/carbon, S/metal organic framework(MOF) and constructing novelty structure of battery.In this review, we present a systematic introduction about the recent progress of Li–S and Li–Se batteries, especially in the area of electrode materials, both of cathode material and anode material for Li–S and Li–Se batteries. In addition, other methods to lead a high-performance Li–S and Li–Se batteries are also briefly summarized, such as constructing novelty battery structure, adopting proper charge–discharge conditions, heteroatom doping into sulfur molecules, using different kinds of electrolytes and binders. In the end of the review, the developed directions of Li–S and Li–Se batteries are also pointed out. We believe that combining proper porous carbon matrix and heteroatom doping may further improve the electrochemical performance of Li–S and Li–Se batteries. We also believe that Li–S and Li–Se batteries will get more exciting results and have promising future by the effort of battery community. 展开更多
关键词 Li–S and Li–se batteries Low cost Novelty battery structure Porous carbon matrix Heteroatom doping
原文传递
Hierarchical porous carbon derived from animal bone as matric to encapsulated selenium for high performance Li-Se battery 被引量:1
3
作者 Li-Sheng Xie Sheng-Xue Yu +3 位作者 Hui-Jun Yang Jun Yang Jian-Lan Ni Jiu-Lin Wang 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期434-441,共8页
Animal bone was employed as raw material to prepare hierarchical porous carbon by KOH activation. Rare metal selenium(Se) was encapsulated into hierarchical porous carbon successfully for the cathode material of Li... Animal bone was employed as raw material to prepare hierarchical porous carbon by KOH activation. Rare metal selenium(Se) was encapsulated into hierarchical porous carbon successfully for the cathode material of Li–Se battery, achieving the transformation of waste into energy,protecting environment and reducing the spread of the disease. Animal bone porous carbon(ABPC) acquires a specific surface area of 1244.7903 m^2·g^-1 and a pore volume of 0.594184 cm^3·g^-1. The composite Se/ABPC with 51 wt%Se was tested as a novel cathode for Li–Se batteries. The results show that Se/ABPC exhibits high specific capacity,good cycling stability and current-rate performance; at 0.1C,the composite Se/ABPC delivers a high reversible capacity of 705 mAh·g^-1 in the second cycle and 591 mAh·g^-1 after 98 cycles. Even at the current density of 2.0C, it can still maintain at a reversible capacity of 485 mAh·g^-1. The excellent electrochemical properties benefit from the high electron conductivity and the carbon with unique hierarchical porous structure. ABPC can be a promising carbon matrix for Li–Se batteries. 展开更多
关键词 se/ABPC Animal bones High rate capability Li–se battery Hierarchical porous structure
原文传递
Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4
4
作者 陈绪亮 宋文海 杨昭荣 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期135-138,共4页
The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity ex... The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2 Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at Hc2 defined as a steep downward peak in the derivative of the M-H curve is dearly drawn. It is found that TN versus H and Hc2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T-H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100K and TN. 展开更多
关键词 CR Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2se4
原文传递
Physical vapor transport growth and morphology of Bi2Se3 microcrystals
5
作者 V.V. Atuchin S.V. Borisov +3 位作者 T.A. Gavrilova K.A. Kokh N.V. Kuratieva N.V. Pervukhina 《Particuology》 SCIE EI CAS CSCD 2016年第3期118-122,共5页
High-quality Bi2Se3 microcrystals were grown by the physical vapor transport (PVT) method without using a foreign transport agent. The microplate crystals grown under the optimal temperature gradient are well facete... High-quality Bi2Se3 microcrystals were grown by the physical vapor transport (PVT) method without using a foreign transport agent. The microplate crystals grown under the optimal temperature gradient are well faceted and have dimensions up to -200 μm, The growth proceeds by the layer-by-layer mecha- nism with the formation of flat low-growth rate facets. The phase composition of the grown crystals was identified by the X-ray single crystal structure analysis in space group R3m, a = 4.1356(3), C= 28.634(5)A, Z=3 (R=0.0147). The most probable twin planes in the tetradymite structure were evaluated by the pseudo translational sublattice merhad. 展开更多
关键词 Bi2se3 Physical vapor transport structure Twin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部