The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in...The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.展开更多
Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited late...Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.展开更多
Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Define...Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms.展开更多
Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not ...Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of...In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.展开更多
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ...With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.展开更多
With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of sof...With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.展开更多
Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Del...Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.展开更多
Software-Defined Networking(SDN)improves network management by separating its control logic from the underlying hardware and integrating it into a logically centralized control unit,termed the SDN controller.SDN adapt...Software-Defined Networking(SDN)improves network management by separating its control logic from the underlying hardware and integrating it into a logically centralized control unit,termed the SDN controller.SDN adaptation is essential for wireless networks because it offers enhanced and data-intensive services.The initial intent of the SDN design was to have a physically centralized controller.However,network experts have suggested logically centralized and physically distributed designs for SDN controllers,owing to issues such as a single point of failure and scalability.This study addressed the security,scalability,reliability,and consistency issues associated with the design of distributed SDN controllers.Moreover,the security issues of an enterprise related to multiple physically distributed controllers in a software-defined wireless local area network(SD-WLAN)were emphasized,and optimal solutions were suggested.展开更多
空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(netw...空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(network functions virtualization,NFV)的空天地一体化网络任务部署与恢复,首先阐述了空天地一体化网络系统架构,介绍了各层网络构成、SDN和NFV原理及其相关应用,然后,针对上述挑战,以服务功能链技术为抓手,提出了面向任务的服务功能链优化部署、利用智能算法实现动态调度、通过匹配博弈算法完成失效恢复等策略,最后,构建了一个用例,设定节点部署、服务功能链建模等,验证了所提策略在提升服务功能链完成效率以及应对资源故障方面的有效性,旨在为空天地一体化网络资源管理提供理论基础。展开更多
By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN dep...By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.展开更多
Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing...Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).展开更多
Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmab...Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.展开更多
The controller is indispensable in software-defined networking(SDN).With several features,controllers monitor the network and respond promptly to dynamic changes.Their performance affects the quality-of-service(QoS)in...The controller is indispensable in software-defined networking(SDN).With several features,controllers monitor the network and respond promptly to dynamic changes.Their performance affects the quality-of-service(QoS)in SDN.Every controller supports a set of features.However,the support of the features may be more prominent in one controller.Moreover,a single controller leads to performance,single-point-of-failure(SPOF),and scalability problems.To overcome this,a controller with an optimum feature set must be available for SDN.Furthermore,a cluster of optimum feature set controllers will overcome an SPOF and improve the QoS in SDN.Herein,leveraging an analytical network process(ANP),we rank SDN controllers regarding their supporting features and create a hierarchical control plane based cluster(HCPC)of the highly ranked controller computed using the ANP,evaluating their performance for the OS3E topology.The results demonstrated in Mininet reveal that a HCPC environment with an optimum controller achieves an improved QoS.Moreover,the experimental results validated in Mininet show that our proposed approach surpasses the existing distributed controller clustering(DCC)schemes in terms of several performance metrics i.e.,delay,jitter,throughput,load balancing,scalability and CPU(central processing unit)utilization.展开更多
随着信息通信技术的飞速发展,下一代通信网络(如5G/6G)对网络性能提出了更高的要求,特别是在低延迟、高带宽、海量设备接入和智能化管控等方面。文章分析了软件定义网络(Software Defined Network,SDN)在大带宽、低时延和大规模物联网...随着信息通信技术的飞速发展,下一代通信网络(如5G/6G)对网络性能提出了更高的要求,特别是在低延迟、高带宽、海量设备接入和智能化管控等方面。文章分析了软件定义网络(Software Defined Network,SDN)在大带宽、低时延和大规模物联网环境中的应用,提出了协议优化策略并采用理论建模与仿真实验相结合的方法,评估不同优化方案的效果。结果表明:SDN优化能有效降低网络延迟,提高带宽利用率,增强物联网设备管理能力。展开更多
Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a ...Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a consistent and holistic way,without the need of understanding the underlying network structure.At present,SDN may face many challenges like insider attacks,i.e.,the centralized control plane would be attacked by malicious underlying devices and switches.To protect the security of SDN,effective detection approaches are indispensable.In the literature,challenge-based collaborative intrusion detection networks(CIDNs)are an effective detection framework in identifying malicious nodes.It calculates the nodes'reputation and detects a malicious node by sending out a special message called a challenge.In this work,we devise a challenge-based CIDN in SDN and measure its performance against malicious internal nodes.Our results demonstrate that such a mechanism can be effective in SDN environments.展开更多
基金supported in part by National Key R&D Program of China(Grant No.2022YFC3803700)in part by the National Natural Science Foundation of China(Grant No.92067102)in part by the project of Beijing Laboratory of Advanced Information Networks.
文摘The rise of time-sensitive applications with broad geographical scope drives the development of time-sensitive networking(TSN)from intra-domain to inter-domain to ensure overall end-to-end connectivity requirements in heterogeneous deployments.When multiple TSN networks interconnect over non-TSN networks,all devices in the network need to be syn-chronized by sharing a uniform time reference.How-ever,most non-TSN networks are best-effort.Path delay asymmetry and random noise accumulation can introduce unpredictable time errors during end-to-end time synchronization.These factors can degrade syn-chronization performance.Therefore,cross-domain time synchronization becomes a challenging issue for multiple TSN networks interconnected by non-TSN networks.This paper presents a cross-domain time synchronization scheme that follows the software-defined TSN(SD-TSN)paradigm.It utilizes a com-bined control plane constructed by a coordinate con-troller and a domain controller for centralized control and management of cross-domain time synchroniza-tion.The general operation flow of the cross-domain time synchronization process is designed.The mecha-nism of cross-domain time synchronization is revealed by introducing a synchronization model and an error compensation method.A TSN cross-domain proto-type testbed is constructed for verification.Results show that the scheme can achieve end-to-end high-precision time synchronization with accuracy and sta-bility.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment.
基金supported in part by Scientific Research Fund of Zhejiang Provincial Education Department under Grant Y202351110in part by Huzhou Science and Technology Plan Project under Grant 2024YZ23+1 种基金in part by Research Fund of National Key Laboratory of Advanced Communication Networks under Grant SCX23641X004in part by Postgraduate Research and Innovation Project of Huzhou University under Grant 2024KYCX50.
文摘Zero Trust Network(ZTN)enhances network security through strict authentication and access control.However,in the ZTN,optimizing flow control to improve the quality of service is still facing challenges.Software Defined Network(SDN)provides solutions through centralized control and dynamic resource allocation,but the existing scheduling methods based on Deep Reinforcement Learning(DRL)are insufficient in terms of convergence speed and dynamic optimization capability.To solve these problems,this paper proposes DRL-AMIR,which is an efficient flow scheduling method for software defined ZTN.This method constructs a flow scheduling optimization model that comprehensively considers service delay,bandwidth occupation,and path hops.Additionally,it balances the differentiated requirements of delay-critical K-flows,bandwidth-intensive D-flows,and background B-flows through adaptiveweighting.Theproposed framework employs a customized state space comprising node labels,link bandwidth,delaymetrics,and path length.It incorporates an action space derived fromnode weights and a hybrid reward function that integrates both single-step and multi-step excitation mechanisms.Based on these components,a hierarchical architecture is designed,effectively integrating the data plane,control plane,and knowledge plane.In particular,the adaptive expert mechanism is introduced,which triggers the shortest path algorithm in the training process to accelerate convergence,reduce trial and error costs,and maintain stability.Experiments across diverse real-world network topologies demonstrate that DRL-AMIR achieves a 15–20%reduction in K-flow transmission delays,a 10–15%improvement in link bandwidth utilization compared to SPR,QoSR,and DRSIR,and a 30%faster convergence speed via adaptive expert mechanisms.
基金supported by the National Natural Science Foundation of China(61962016)the Ministry of Science and Technology of China(G2022033002L)+1 种基金National Natural Science Foundation of Guangxi(2022JJA170057)Guangxi Education Department’s Project on Improving the Basic Research Ability of Young and Middleaged Teachers in Universities(2023ky0812,Research on Statistical Network Delay Predictions in Large-scale SDNs).
文摘Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
基金fully supported by GUET Excellent Graduate Thesis Program(Grant No.19YJPYBS03)Innovation Project of Guangxi Graduate Education(Grant No.YCBZ2022109)New Technology Research University Cooperation Project of the 34th Research Institute of China Electronics Technology Group Corporation,2021(Grant No.SF2126007)。
文摘In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.
基金supported by the National Natural Science Foundation of China under Grant 61602162the Hubei Provincial Science and Technology Plan Project under Grant 2023BCB041.
文摘With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures.
文摘With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.
文摘Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.
文摘Software-Defined Networking(SDN)improves network management by separating its control logic from the underlying hardware and integrating it into a logically centralized control unit,termed the SDN controller.SDN adaptation is essential for wireless networks because it offers enhanced and data-intensive services.The initial intent of the SDN design was to have a physically centralized controller.However,network experts have suggested logically centralized and physically distributed designs for SDN controllers,owing to issues such as a single point of failure and scalability.This study addressed the security,scalability,reliability,and consistency issues associated with the design of distributed SDN controllers.Moreover,the security issues of an enterprise related to multiple physically distributed controllers in a software-defined wireless local area network(SD-WLAN)were emphasized,and optimal solutions were suggested.
文摘空天地一体化网络作为6G技术的关键组成,在整合天基、空基和地基网络时,面临节点异构性、业务多样性等挑战,进而引发资源分配、竞争及故障风险等问题。基于此,聚焦基于软件定义网络(software defined network,SDN)与网络功能虚拟化(network functions virtualization,NFV)的空天地一体化网络任务部署与恢复,首先阐述了空天地一体化网络系统架构,介绍了各层网络构成、SDN和NFV原理及其相关应用,然后,针对上述挑战,以服务功能链技术为抓手,提出了面向任务的服务功能链优化部署、利用智能算法实现动态调度、通过匹配博弈算法完成失效恢复等策略,最后,构建了一个用例,设定节点部署、服务功能链建模等,验证了所提策略在提升服务功能链完成效率以及应对资源故障方面的有效性,旨在为空天地一体化网络资源管理提供理论基础。
基金supported in part by the National High Technology Research and Development Program(863 Program)of China under Grant No.2011AA01A101the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA01330the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA013303
文摘By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups (61521003)the National Natural Science Foundation of China (61872382)+1 种基金the National Key Research and Development Program of China (2017YFB0803204)the Research and Development Program in Key Areas of Guangdong Province (No.2018B010113001)
文摘Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).
基金supported by the Wuhan Frontier Program of Application Foundation (No.2018010401011295)National High Technology Research and Development Program of China (“863” Program) (Grant No. 2015AA016002)
文摘Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2018-0-01431)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘The controller is indispensable in software-defined networking(SDN).With several features,controllers monitor the network and respond promptly to dynamic changes.Their performance affects the quality-of-service(QoS)in SDN.Every controller supports a set of features.However,the support of the features may be more prominent in one controller.Moreover,a single controller leads to performance,single-point-of-failure(SPOF),and scalability problems.To overcome this,a controller with an optimum feature set must be available for SDN.Furthermore,a cluster of optimum feature set controllers will overcome an SPOF and improve the QoS in SDN.Herein,leveraging an analytical network process(ANP),we rank SDN controllers regarding their supporting features and create a hierarchical control plane based cluster(HCPC)of the highly ranked controller computed using the ANP,evaluating their performance for the OS3E topology.The results demonstrated in Mininet reveal that a HCPC environment with an optimum controller achieves an improved QoS.Moreover,the experimental results validated in Mininet show that our proposed approach surpasses the existing distributed controller clustering(DCC)schemes in terms of several performance metrics i.e.,delay,jitter,throughput,load balancing,scalability and CPU(central processing unit)utilization.
文摘随着信息通信技术的飞速发展,下一代通信网络(如5G/6G)对网络性能提出了更高的要求,特别是在低延迟、高带宽、海量设备接入和智能化管控等方面。文章分析了软件定义网络(Software Defined Network,SDN)在大带宽、低时延和大规模物联网环境中的应用,提出了协议优化策略并采用理论建模与仿真实验相结合的方法,评估不同优化方案的效果。结果表明:SDN优化能有效降低网络延迟,提高带宽利用率,增强物联网设备管理能力。
基金This work was supported by National Natural Science Foundation of China(No.61802080 and 61802077)Guangdong General Colleges and Universities Research Project(2018GkQNCX105)+1 种基金Zhongshan Public Welfare Science and Technology Research Project(2019B2044)Keping Yu was supported in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)under Grant JP18K18044.
文摘Software-Defined Networking(SDN)is an emerging architecture that enables a computer network to be intelligently and centrally controlled via software applications.It can help manage the whole network environment in a consistent and holistic way,without the need of understanding the underlying network structure.At present,SDN may face many challenges like insider attacks,i.e.,the centralized control plane would be attacked by malicious underlying devices and switches.To protect the security of SDN,effective detection approaches are indispensable.In the literature,challenge-based collaborative intrusion detection networks(CIDNs)are an effective detection framework in identifying malicious nodes.It calculates the nodes'reputation and detects a malicious node by sending out a special message called a challenge.In this work,we devise a challenge-based CIDN in SDN and measure its performance against malicious internal nodes.Our results demonstrate that such a mechanism can be effective in SDN environments.