Cyber-physical systems(CPSs)are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world,which is augmented by Internet connectivity.This vulnerability necess...Cyber-physical systems(CPSs)are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world,which is augmented by Internet connectivity.This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs.However,current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks(SDAs)due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks.Moreover,some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority.To address these issues,we introduce a novel learning-based passive resilient controller(LPRC).Our approach,unlike observer-based state reconstruction,shows enhanced effectiveness in countering SDAs.We developed a safety state set,represented by an ellipsoid,to ensure CPS stability under SDA conditions,maintaining system trajectories within this set.Additionally,by employing deep reinforcement learning(DRL),the LPRC acquires the capacity to adapt and diverse evolving attack strategies.To empirically substantiate our methodology,various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.展开更多
The energy sector is pivotal in Vietnam’s commitment to achieving net-zero emissions by 2050.This study employs a combination of Structural Decomposition Analysis(SDA)and decoupling approaches based on data from Viet...The energy sector is pivotal in Vietnam’s commitment to achieving net-zero emissions by 2050.This study employs a combination of Structural Decomposition Analysis(SDA)and decoupling approaches based on data from Vietnam’s energy statistics and the Vietnam Living Standards Survey(VHLSS)for 2016,2018,and 2020.The primary aim is to elucidate the effects of direct energy consumption by household groups on CO_(2)emissions,examine factors affecting emissions,and clarify the relationship between CO_(2)emissions from household energy consumption and economic growth in Vietnam.Research results underscore that household groups make considerable use of electricity and Liquefied Petroleum Gas(LPG),simultaneously reducing the proportion of firewood,rice husk,sawdust,agricultural by-products and other fuels.The decrease in energy intensity emerges as the primary factor in lowering household emissions,while population growth and economic efficiency exert the opposite effect.Additionally,the research reveals disparities in emissions between urban and rural areas,similarly among household groups within the given location.Despite maintaining a robust decoupling status between emissions from household consumption and economic growth,unsustainable risks persist,particularly with the increase in electricity demand.The study also highlights the uneven impact of the COVID-19 epidemic on CO_(2)emissions across household groups.Drawing upon these findings,several recommendations are proposed to control CO_(2)emissions from direct energy household consumption to facilitate the most effective household decarbonisation process while ensuring sustainable economic growth in Vietnam.展开更多
基金supported by the National Natural Science Foundation of China(52332011).
文摘Cyber-physical systems(CPSs)are increasingly vulnerable to cyber-attacks due to their integral connection between cyberspace and the physical world,which is augmented by Internet connectivity.This vulnerability necessitates a heightened focus on developing resilient control mechanisms for CPSs.However,current observer-based active compensation resilient controllers exhibit poor performance against stealthy deception attacks(SDAs)due to the difficulty in accurately reconstructing system states because of the stealthy nature of these attacks.Moreover,some non-active compensation approaches are insufficient when there is a complete loss of actuator control authority.To address these issues,we introduce a novel learning-based passive resilient controller(LPRC).Our approach,unlike observer-based state reconstruction,shows enhanced effectiveness in countering SDAs.We developed a safety state set,represented by an ellipsoid,to ensure CPS stability under SDA conditions,maintaining system trajectories within this set.Additionally,by employing deep reinforcement learning(DRL),the LPRC acquires the capacity to adapt and diverse evolving attack strategies.To empirically substantiate our methodology,various attack methods were compared with current passive and active compensation resilient control methods to evaluate their performance.
基金the Funds for Science and Technology Development of the Ministry of Education and Training,Vietnam(grant number B2023-DNA-21).
文摘The energy sector is pivotal in Vietnam’s commitment to achieving net-zero emissions by 2050.This study employs a combination of Structural Decomposition Analysis(SDA)and decoupling approaches based on data from Vietnam’s energy statistics and the Vietnam Living Standards Survey(VHLSS)for 2016,2018,and 2020.The primary aim is to elucidate the effects of direct energy consumption by household groups on CO_(2)emissions,examine factors affecting emissions,and clarify the relationship between CO_(2)emissions from household energy consumption and economic growth in Vietnam.Research results underscore that household groups make considerable use of electricity and Liquefied Petroleum Gas(LPG),simultaneously reducing the proportion of firewood,rice husk,sawdust,agricultural by-products and other fuels.The decrease in energy intensity emerges as the primary factor in lowering household emissions,while population growth and economic efficiency exert the opposite effect.Additionally,the research reveals disparities in emissions between urban and rural areas,similarly among household groups within the given location.Despite maintaining a robust decoupling status between emissions from household consumption and economic growth,unsustainable risks persist,particularly with the increase in electricity demand.The study also highlights the uneven impact of the COVID-19 epidemic on CO_(2)emissions across household groups.Drawing upon these findings,several recommendations are proposed to control CO_(2)emissions from direct energy household consumption to facilitate the most effective household decarbonisation process while ensuring sustainable economic growth in Vietnam.