期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
YOLO-SDLUWD:YOLOv7-based small target detection network for infrared images in complex backgrounds
1
作者 Jinxiu Zhu Chao Qin Dongmin Choi 《Digital Communications and Networks》 2025年第2期269-279,共11页
Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv... Infrared small-target detection has important applications in many fields due to its high penetration capability and detection distance.This study introduces a detector called“YOLO-SDLUWD”which is based on the YOLOv7 network,for small target detection in complex infrared backgrounds.The“SDLUWD”refers to the combination of the Spatial Depth layer followed Convolutional layer structure(SD-Conv)and a Linear Up-sampling fusion Path Aggregation Feature Pyramid Network(LU-PAFPN)and a training strategy based on the normalized Gaussian Wasserstein Distance loss(WD-loss)function.“YOLO-SDLUWD”aims to reduce detection accuracy when the maximum pooling downsampling layer in the backbone network loses important feature information,support the interaction and fusion of high-dimensional and low-dimensional feature information,and overcome the false alarm predictions induced by noise in small target images.The detector achieved a mAP@0.5 of 90.4%and mAP@0.5:0.95 of 48.5%on IRIS-AG,an increase of 9%-11%over YOLOv7-tiny,outperforming other state-of-the-art target detectors in terms of accuracy and speed. 展开更多
关键词 Small infrared target detection YOLOv7 sd-conv LU-PAFPN WD-loss
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部