The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local ...The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local scour patterns around a novel mono-column composite bucket foundation(MCCBF) under unidirectional flows. The experiments reveal that under weak-flow conditions, no significant scour pits develop at the front or lateral sides of the MCCBF,while two distinct scour pits form behind the lateral sides. Under strong-flow conditions, substantial scour pits emerge at both frontal and lateral sides of the bucket foundation, with two scour pits extending downstream on either side. The research demonstrates that both the range and depth of local scour increase with higher flow velocity and decreasing water depth, though the mechanisms influencing local scour around the MCCBF prove more complex than those affecting monopiles. The distinctive structural features of the MCCBF necessitate particular consideration of effects related to bucket foundation exposure. The study concludes by proposing an empirical formula for predicting maximum scour depth around the MCCBF.展开更多
Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investig...Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.展开更多
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co...Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.展开更多
Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experi...Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.展开更多
This article provides a method by which the scour depth and scour width below pipelines,and the scour depth around single vertical piles as well as the time scales of scour for both structures due to bichromatic and b...This article provides a method by which the scour depth and scour width below pipelines,and the scour depth around single vertical piles as well as the time scales of scour for both structures due to bichromatic and bidirectional waves are calculated.The scour and time scale formulae summarized by Sumer and Fredsøe(2002)as well as the bottom shear stress formulae under bichromatic and bidirectional waves by Myrhaug et al.(2023)are used.Results for unidirectional bichromatic waves and symmetrically bidirectional monochromatic waves are provided,showing qualitative agreement with what is expected physically.Qualitative comparisons are made with the data from Schendel et al.’s(2020)small scale laboratory tests on scour around a monopile induced by directionally spread waves.Applications to related cases for pipelines are also suggested.In order to conclude regarding the validity of the method for pipelines and vertical piles,it is required to compare with data in its validity range.展开更多
The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the loc...The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.展开更多
This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a flood...This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a floodplain. Notwithstanding this, the mechanism of scour at both piers and abutments is very similar; moreover, the failure mechanisms associated with both armoring and flow-altering countermeasures are not very different. In rivers with a floodplain, abutment scour becomes much more complex. In cases where the abutment ends at or near to the floodplain, it can initiate bank erosion, which clearly is an important erosion problem that is quite distinct from the customary scour at either an abutment in rivers without a floodplain or a pier. For this reason, abutment scour can be very site-specific while pier-scour is more generic in nature. To this end, the ability to identify the type of abutment scour that may form in a particular channel is closely related to an engineer's ability to propose devices for effective scour countermeasure.By summarizing research efforts on using riprap as a pier or abutment countermeasure over the past few decades, this paper highlights the deficiencies of riprap in arresting pier scour. To this end, different failure mechanisms are identified. They are shear failure, winnowing failure, edge failure, bedform-induced failure and bed-degradation induced failure. Each failure mechanism can singly or, more likely, combine to cause the eventual breakdown of the riprap layer. The study shows that a riprap layer is vulnerable to other failure mechanisms even though it is adequately designed against shear failure, rendering it ineffective in arresting scour.展开更多
The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the acti...The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.展开更多
In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are sum...In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.展开更多
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and ...The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.展开更多
Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development aroun...Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.展开更多
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ...Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.展开更多
This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present app...This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.展开更多
Scour around a submerged square pile was realized experimentally in a steady flow to study the effects of flow depth on local scour.Flow depth to pile height ratios ranging from 1.5 to 5 in uniform sand and 2 to 5 in ...Scour around a submerged square pile was realized experimentally in a steady flow to study the effects of flow depth on local scour.Flow depth to pile height ratios ranging from 1.5 to 5 in uniform sand and 2 to 5 in non-uniform sand were tested in the approaching flow velocity to critical velocity(larger than which the sediment particle is motivated)ratios of 0.56 and 1.03,respectively.The influences of flow depth were investigated on the basis of analysis of the three-dimensional topography,temporal maximum scour depth,bed profile development,and equilibrium scour depth.Results showed that the maximum scour depth was at the upstream corners of the pile other than at the stagnation point.The evolutions of the maximum scour depth data in non-uniform sand were well fitted with a recent exponential function,which characterized the initial,developing,and equilibrium stages of scour depth.The scour hole slopes upstream of the pile were found to be parallel to each other in the process of each test and were mainly governed by the sediment repose underwater.The equilibrium scour depth varied slightly with flow depth when the submergence ratio was larger than 1 in uniform sand while it was 2 in non-uniform sand.The armoring effects of coarse sediment particles markedly reduced the sediment transport in non-uniform sand despite the 0.34 increment in non-uniformity.展开更多
A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length.The novel strategy is utilized in offshore areas instead of a single flo...A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length.The novel strategy is utilized in offshore areas instead of a single flow line.In this regard,there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current.Hence,this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests.Accordingly,at the first phase of the research,a single pipe was established and tested in laboratory to compare the results with those of an empirical equation.After finishing experimental verifications,piggyback pipelines were also assembled to study the scouring under steady current conditions.It was concluded that by increasing the gap distance between the pipes,the maximum scour depth decreases;however,an increase in the small pipe’s diameter results in a larger maximum scour depth.Secondly,numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study.Finally,the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.展开更多
Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all...Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all the measured scour profiles can be described by two similarity equations,where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth;the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge;the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge;and the maximum scour depth decreases with increas-ing sediment size,but increases with deck inundation.The theoretical analysis shows that:bridge scour can be divided into three cases,i.e.downstream unsubmerged,partially submerged,and totally submerged.For downstream unsubmerged flows,the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied;for partially and totally submerged flows,the equilibrium maximum scour depth can be described by a scour and an inundation similarity number,which has been confirmed by experiments with two decks and two sediment sizes.For application,a design and field evaluation procedure with examples is presented,including the maximum scour depth and scour profile.展开更多
The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the j...The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds.Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15°and 20°and then it decreases when the inclination angle becomes higher.展开更多
Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submer...Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.展开更多
Foundation scour is an important cause for structural failure of sea-crossing bridges. Usually, the sea-crossing bridges operate under the harsh natural environment in which service wind, wave and vehicle loads are st...Foundation scour is an important cause for structural failure of sea-crossing bridges. Usually, the sea-crossing bridges operate under the harsh natural environment in which service wind, wave and vehicle loads are stronger and extreme loads such as earthquake, hurricane, and ship collision, are more frequent. As a result of the foundation scour,the dynamic behavior of bridge under different combined action of service and extreme loads may be further escalated.In particular, this work has investigated the scour effect on a sea-crossing bridge under service wind, wave and vehicle loads as well as extreme seismic loads. The dynamic coupled earthquake-wind-wave-vehicle-bridge(EWWVB) system is established by considering the interactions within the system, and the p-y curve method is used to calculate the loaddisplacement relation of the pile and soil under various levels of foundation scour. After that, a case study has been performed on a cable-stayed bridge with foundation scour. The results indicate that the dynamic characteristics of bridge structure will change after considering bridge scour, and the dynamic responses of bridge and vehicle will be affected to different degrees under service and seismic loads considering bridge scour.展开更多
Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed t...Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.展开更多
基金financially supported by the Scientific Research Foundation of China Three Gorges Corporation (Grant No. 32007095)。
文摘The composite bucket foundations of offshore wind turbines penetrate minimally into the seabed, making local scour a significant threat to wind turbine stability. This study develops a physical model to examine local scour patterns around a novel mono-column composite bucket foundation(MCCBF) under unidirectional flows. The experiments reveal that under weak-flow conditions, no significant scour pits develop at the front or lateral sides of the MCCBF,while two distinct scour pits form behind the lateral sides. Under strong-flow conditions, substantial scour pits emerge at both frontal and lateral sides of the bucket foundation, with two scour pits extending downstream on either side. The research demonstrates that both the range and depth of local scour increase with higher flow velocity and decreasing water depth, though the mechanisms influencing local scour around the MCCBF prove more complex than those affecting monopiles. The distinctive structural features of the MCCBF necessitate particular consideration of effects related to bucket foundation exposure. The study concludes by proposing an empirical formula for predicting maximum scour depth around the MCCBF.
文摘Scour around bridge pier foundations is a complex phenomenon that can threaten structural stability.Accurate prediction of scour depth around compound piers remains challenging for bridge engineers.This study investigated the effect of foundation elevation on scour around compound piers and developed reliable scour depth prediction models for economical foundation design.Experiments were conducted under clear-water conditions using two circular piers:(1)a uniform pier(with a diameter of D)and(2)a compound pier consisting of a uniform pier resting on a circular foundation(with a foundation diameter(D_(f))of 2D)positioned at various elevations(Z)relative to the channel bed.Results showed that foundation elevation significantly affected scour depth.Foundations at or below the bed(Z/D≥0)reduced scour,while those projecting into the flow field(Z/D<0)increased scour.The optimal foundation elevation was found to be 0.1D below the bed level,yielding a 57%reduction in scour depth compared to the uniform pier due to its shielding effect against downflow and horseshoe vortices.In addition,regression,artificial neural network(ANN),and M5 model tree models were developed using experimental data from this and previous studies.The M5 model outperformed the traditional HEC-18 equation,regression,and ANN models,with a coefficient of determination greater than 0.85.Sensitivity analysis indicated that flow depth,foundation elevation,and diameter significantly influenced scour depth prediction,whereas sediment size had a lesser impact.
基金supported by the National Nature Science Foundation of China National Outstanding Youth Science Fund Project(Grant No.52122109)the National Natural Science Foundation of China(Grants No.51861165102 and 52039005).
文摘Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.
基金financially supported by the National Key Research and Development Program of China (Grant No. 2021YFB2601100)the National Natural Science Foundation of China (Grant No. 51979190)。
文摘Under the combination of currents and waves, seabed scour occurs around offshore wind turbine foundations, which affects the stability and safe operation of offshore wind turbines. In this study, physical model experiments under unidirectional flow, bidirectional flow, and wave-current interactions with different flow directions around the pile group foundation were first conducted to investigate the development of scour around the pile group foundation.Additionally, a three-dimensional scour numerical model was established via the open-source software REEF3D to simulate the flow field and scour around the prototype-scale foundation. The impact of flow on scour was discussed.Under unidirectional flow, scour equilibrium was reached more quickly, with the maximum scour depth reaching approximately 1.2 times the pile diameter and the extent of the scour hole spanning about 4.9 times the pile diameter.Compared with those under unidirectional flow, the scour depths under combinations of currents and waves, as well as bidirectional flow, were slightly smaller. However, the morphology of scour holes was more uniform and symmetrical. The numerical simulation results show good agreement with the experimental data, demonstrating the impact of varying flow directions on the velocity distribution around the foundation, the morphology of scour holes, and the location of the maximum scour depth.
文摘This article provides a method by which the scour depth and scour width below pipelines,and the scour depth around single vertical piles as well as the time scales of scour for both structures due to bichromatic and bidirectional waves are calculated.The scour and time scale formulae summarized by Sumer and Fredsøe(2002)as well as the bottom shear stress formulae under bichromatic and bidirectional waves by Myrhaug et al.(2023)are used.Results for unidirectional bichromatic waves and symmetrically bidirectional monochromatic waves are provided,showing qualitative agreement with what is expected physically.Qualitative comparisons are made with the data from Schendel et al.’s(2020)small scale laboratory tests on scour around a monopile induced by directionally spread waves.Applications to related cases for pipelines are also suggested.In order to conclude regarding the validity of the method for pipelines and vertical piles,it is required to compare with data in its validity range.
基金supported by the National Natural Science Foundation of China(Grants No.52001149,52039005,and 51861165102)the Research Funds for the Central Universities(Grants No.TKS20210102,TKS20210110,and TKS20210303)the Tianjin Science and Technology Planning Project(Grant No.17PTYPHZ00080).
文摘The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.
文摘This paper examines scour and scour countermeasures at bridge piers and abutments. Abutment scour is by far more complex than its counterpart associated with piers because of the possibility of the presence of a floodplain. Notwithstanding this, the mechanism of scour at both piers and abutments is very similar; moreover, the failure mechanisms associated with both armoring and flow-altering countermeasures are not very different. In rivers with a floodplain, abutment scour becomes much more complex. In cases where the abutment ends at or near to the floodplain, it can initiate bank erosion, which clearly is an important erosion problem that is quite distinct from the customary scour at either an abutment in rivers without a floodplain or a pier. For this reason, abutment scour can be very site-specific while pier-scour is more generic in nature. To this end, the ability to identify the type of abutment scour that may form in a particular channel is closely related to an engineer's ability to propose devices for effective scour countermeasure.By summarizing research efforts on using riprap as a pier or abutment countermeasure over the past few decades, this paper highlights the deficiencies of riprap in arresting pier scour. To this end, different failure mechanisms are identified. They are shear failure, winnowing failure, edge failure, bedform-induced failure and bed-degradation induced failure. Each failure mechanism can singly or, more likely, combine to cause the eventual breakdown of the riprap layer. The study shows that a riprap layer is vulnerable to other failure mechanisms even though it is adequately designed against shear failure, rendering it ineffective in arresting scour.
基金the National Natural Science Foundation of China!(No.599790 1 9)
文摘The sea bottom in front of a breakwater is scoured under the action of broken waves,and this will affect the stability of the breakwater.In this paper,the scours of sandy seabed in front of a breakwater under the action of broken waves are investigated experimentally.The depth and range of the scouring trough at the foot of a breakwater are studied,and the influence of open foundation-bed on scouring and depositing is also discussed.In order to apply the research results to practical projects,the scale of model sediment and the scale of scours and depositions are suggested.
基金supported by the Major International Joint Research Project P0W3M of the National Natural Science Foundation of China(Grant No.51920105013)the General Project of the National Natural Science Foundation of China(Grant No.52071127).
文摘In this article,current research findings of local scour at offshore windfarm monopile foundations are presented.The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized,including the current-only condition,wave-only condition,combined wave-current condition,and complex dynamic condition.Furthermore,this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions.The weakness of existing researches and future prospects are also discussed.It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings.The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.
基金the National Natural Science Foundation of China (Nos. 40901007, 50979103)
文摘The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.
文摘Local scour around bridge abutments is a widespread problem that can result in structural failure. Collars can be used as a countermeasure to reduce the scour depth. In this study, the temporal scour development around a wing-wall abutment was investigated with and without collars. The tests were carried out under clear-water conditions for different abutment lengths, with collars of different sizes placed at the bed level. When no collar was used in the experiments, 70% of the maximum scour depth occurred in less than 2 h. However, when a collar with a width greater than the length of the abutment was used, no scour was observed for up to 200 min from the beginning of the experiments. The results show that an increase in the collar width not only led to a lag time for the onset of scouring but also reduced the maximum scour depth. Moreover, an increased collar width led to a better performance in mitigating scouring around smaller abutments. Generally, the scour depth decreased by 9%-37% with different collar widths.
文摘Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.202061027)the National Natural Science Foundation of China(No.41572247)。
文摘This study presents an innovative theoretical approach to predicting the scour depth around a foundation in large-scale model tests based on small-scale model tests under combined waves and currents.In the present approach,the hydrodynamic parameters were designed based on the Froude similitude criteria.To avoid the cohesive behavior,we scaled the sediment size based on the settling velocity similarity,i.e.,the suspended load similarity.Then,a series of different scale model tests was conducted to obtain the scour depth around the pile in combined waves and currents.The fitting formula of scour depth from the small-scale model tests was used to predict the results of large-scale tests.The accuracy of the present approach was validated by comparing the prediction values with experimental data of large-scale tests.Moreover,the correctness and accuracy of the present approach for foundations with complex shapes,e.g.,the tripod foundation,was further checked.The results indicated that the fitting line from small-scale model tests slightly overestimated the experimental data of large-scale model tests,and the errors can be accepted.In general,the present approach was applied to predict the maximum or equilibrium scour depth of the large-scale model tests around single piles and tripods.
基金the support of the National Natural Science Foundation of China(Nos.51679223 and 51739010)the 111 Project(No.B14028),the Shangdong Provincial Key Laboratory of Ocean Engineering(No.kl oe202009)+1 种基金the Ningbo Natural Science Foundation(No.2021J096)a grant from the 7th Generation Ultra-Deepwater Drilling Rig Innovation Project。
文摘Scour around a submerged square pile was realized experimentally in a steady flow to study the effects of flow depth on local scour.Flow depth to pile height ratios ranging from 1.5 to 5 in uniform sand and 2 to 5 in non-uniform sand were tested in the approaching flow velocity to critical velocity(larger than which the sediment particle is motivated)ratios of 0.56 and 1.03,respectively.The influences of flow depth were investigated on the basis of analysis of the three-dimensional topography,temporal maximum scour depth,bed profile development,and equilibrium scour depth.Results showed that the maximum scour depth was at the upstream corners of the pile other than at the stagnation point.The evolutions of the maximum scour depth data in non-uniform sand were well fitted with a recent exponential function,which characterized the initial,developing,and equilibrium stages of scour depth.The scour hole slopes upstream of the pile were found to be parallel to each other in the process of each test and were mainly governed by the sediment repose underwater.The equilibrium scour depth varied slightly with flow depth when the submergence ratio was larger than 1 in uniform sand while it was 2 in non-uniform sand.The armoring effects of coarse sediment particles markedly reduced the sediment transport in non-uniform sand despite the 0.34 increment in non-uniformity.
文摘A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length.The novel strategy is utilized in offshore areas instead of a single flow line.In this regard,there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current.Hence,this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests.Accordingly,at the first phase of the research,a single pipe was established and tested in laboratory to compare the results with those of an empirical equation.After finishing experimental verifications,piggyback pipelines were also assembled to study the scouring under steady current conditions.It was concluded that by increasing the gap distance between the pipes,the maximum scour depth decreases;however,an increase in the small pipe’s diameter results in a larger maximum scour depth.Secondly,numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study.Finally,the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.
文摘Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all the measured scour profiles can be described by two similarity equations,where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth;the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge;the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge;and the maximum scour depth decreases with increas-ing sediment size,but increases with deck inundation.The theoretical analysis shows that:bridge scour can be divided into three cases,i.e.downstream unsubmerged,partially submerged,and totally submerged.For downstream unsubmerged flows,the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied;for partially and totally submerged flows,the equilibrium maximum scour depth can be described by a scour and an inundation similarity number,which has been confirmed by experiments with two decks and two sediment sizes.For application,a design and field evaluation procedure with examples is presented,including the maximum scour depth and scour profile.
基金The paper was supported by National Nature Fund of China(52071091)the Key Laboratory of Expressway Construction Machinery of Shanxi Province which is gained by Zhang(300102259512).
文摘The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds.Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15°and 20°and then it decreases when the inclination angle becomes higher.
基金support from the National Natural Science Foundation of China (Nos.52301324 and 52001276)the Natural Science Foundation of Zhejiang Province (No.LQ24E090001)+2 种基金the Open Fund of Key Laboratory of Estuary and Coast of Zhejiang Province (No.ZIHE21005)the Natural Science Foundation of Ningbo (No.2021J096)the Zhejiang Transportation Science and Technology (No.2021064)。
文摘Elucidating the flow features around piles in local scouring processes is crucial for studies of local scouring mechanisms and scour depth estimates.This study details the flow turbulence characteristics of two submerged piles that are determined by solving the Navier-Stokes equations with the improved delayed detached eddy simulation model.This model is verified by comparing experimental and numerical results for hydrodynamic parameters with the literature for both square-crossing piles(SCPs)and circular-crossing piles(CCPs).Original topographies of flat and scoured beds(i.e.,the initial and equilibrium scouring stages)are based on experimental results obtained by the authors in the present paper.SCP and CCP flow features in the scouring process are discussed.The results indicate that during the scouring process,the time-averaged drag coefficient and root mean square(rms)of the lift coefficient increase linearly in the CCP test,while the rms of the lift coefficient in the SCP test decreases linearly.Moreover,the minimum pressure coefficient is always located in the upstream corners in the SCP case but moves from 72.5°to 79.5°when the scour hole is completely developed in the CCP case.Downward flow behind the pile,which is generated by separated boundary layers above the top face of the pile,can reach the sand bed and turn the separated shear layers into patches of small vortices in the near-wake regions.Thus,the high shear stress zones are mainly at the scour edges under scoured-bed conditions.
基金Project(51908472)supported by the National Natural Science Foundation of ChinaProjects(2019TQ0271,2019M663554)supported by the China Postdoctoral Science FoundationProject(2020YJ0080)supported by the Project of Science and Technology Department of Sichuan Province,China。
文摘Foundation scour is an important cause for structural failure of sea-crossing bridges. Usually, the sea-crossing bridges operate under the harsh natural environment in which service wind, wave and vehicle loads are stronger and extreme loads such as earthquake, hurricane, and ship collision, are more frequent. As a result of the foundation scour,the dynamic behavior of bridge under different combined action of service and extreme loads may be further escalated.In particular, this work has investigated the scour effect on a sea-crossing bridge under service wind, wave and vehicle loads as well as extreme seismic loads. The dynamic coupled earthquake-wind-wave-vehicle-bridge(EWWVB) system is established by considering the interactions within the system, and the p-y curve method is used to calculate the loaddisplacement relation of the pile and soil under various levels of foundation scour. After that, a case study has been performed on a cable-stayed bridge with foundation scour. The results indicate that the dynamic characteristics of bridge structure will change after considering bridge scour, and the dynamic responses of bridge and vehicle will be affected to different degrees under service and seismic loads considering bridge scour.
文摘Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.