In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope...In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.展开更多
A partly clumped-particles combined with joint planes model was developed to simulate the microstructure of quartz mica schist.It considers grain-scale heterogeneity including microgeometry heterogeneity and grain-sca...A partly clumped-particles combined with joint planes model was developed to simulate the microstructure of quartz mica schist.It considers grain-scale heterogeneity including microgeometry heterogeneity and grain-scale elastic heterogeneity.Clumped-particles with larger volume and larger stiffness were used to represent stiff minerals such as quartz,the rest of unclumped particles with smaller stiffness were used to represent soft minerals such as mica.The joint planes,which have smaller stiffness and strength than mica,were used to describe schist.The extensive sensitivity studies have shown that the clump’s radius,clump’s content and joint plane’s strength affect the microscopic and macroscopic behaviors of sample.For DanBa quartz mica schist,the model calibrated uniaxial tests and well matched with the stress-strain curves,crack initiation stress and crack damage stress of laboratory test.展开更多
Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist(QMS) rocks in a cost-effective manner by establishing correla...Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist(QMS) rocks in a cost-effective manner by establishing correlations between non-destructive and destructive tests. Using simple regression analysis, good correlations were obtained between the pulse wave velocities and the properties of QMS rocks. The results were further improved by using multiple regression analysis as compared to those obtained by the simple linear regression analysis. The results were also compared to the ones obtained by other empirical equations available. The general equations encompassing all types of rocks did not give reliable results of rock properties and showed large relative errors, ranging from 23% to 1146%. It is suggested that empirical correlations must be investigated separately for different types of rocks. The general empirical equations should not be used for the design and planning purposes before they are verified at least on one rock sample from the project site, as they may contain large unacceptable errors.展开更多
The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South I...The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+AI]) (0.68-0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33-0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, AI, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.展开更多
Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the...Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the hard rocks such as sandstone,granite,limestone,and marble,whereas soft rocks,such as schist,are less studied.Therefore,in this study,a series of triaxial impact tests were conducted on dry and saturated schist by employing a modified triaxial split Hopkinson pressure bar system to reveal the coupling effects of water,strain rate,and triaxial confining pressure on the mechanical properties of schist.The results show that schist is a type of watersensitive rock and the stress-strain curve of saturated schist has apparent ductility.The effects of strain rate on dynamic strain,deformation modulus and peak stress were analyzed.The results also show that the dynamic peak stress is affected by the combined softening effect and viscous effect of water under impact loading.Finally,it was found that the failure mode of schist belongs to typical axial tensile failure under uniaxial impact tests,and shear failure is the main failure mode under triaxial impact tests.With the increase in confining pressure,the failure modes of schist change from tensile failure to shear failure.This research can provide useful parameters for geological engineering hazard prevention in mountain areas.展开更多
Plate tectonic activity has played a critical role in the development of petrotectonic associations in the Kadiri schist belt. The calc alkaline association of basalt, andesite, dacite and rhyolite (BADR) is the sig...Plate tectonic activity has played a critical role in the development of petrotectonic associations in the Kadiri schist belt. The calc alkaline association of basalt, andesite, dacite and rhyolite (BADR) is the signature volcanic rock suite of the convergent margin. The N-S belt has gone below the unconformity plane of Cuddapah sediments. In the northern part geochemical and structural attributes of the Kadiri greenstone belt is studied along with microscopic observations of selected samples. Harker diagram plots of major elements generally indicate a liquid line of descent from a common source, such that BADR rocks are derived from a common parent magma of basaltic to andesitic composition. These calc-alkaline volcanic rocks are formed at convergent margins where more silicic rocks represent more highly fractionated melt. All the litho-units of this greenstone belt indicate crush and strain effects. The stretched pebbles in the deformed volcanic matrix with tectonite development along with associated greenschist facies metamorphism, alteration and hydration is remarkable. Flow foliation plane with N-S strike and very low angle (5~ to 10~) easterly dip and N-S axial planar schistosity formed due to later phase isoclinal folding can be clearly identified in the field. Basic intrusives are quite common in the surrounding area. All the observations including the field setting and geochemistry clearly demonstrate ocean-continent subduction as the tectonic environment of the study area.展开更多
Understanding the electrical conductivity of high pressure metamorphic rocks is essential to constrain the compositions in the subduction zone and continental crust. In this study, we calculated the electrical conduct...Understanding the electrical conductivity of high pressure metamorphic rocks is essential to constrain the compositions in the subduction zone and continental crust. In this study, we calculated the electrical conductivity for such rocks sampled from the central Qiangtang metamorphic belt in the northern Tibetan Plateau. The results reveal that, when aqueous fluids are absent, the conductivity of meta-mafic rocks(e.g., eclogite and amphibolite) is strikingly higher than that of meta-felsic rocks(e.g., garnet-quartz-mica schist). The conductivity of eclogite decreases due to the enrichment of amphibole, but this effect is diminished when a critical degree of amphibolization is reached. Our calculated conductivity of eclogite and amphibolite differs greatly from the experimentally derived results for the eclogites from other localities, partly owing to the strong effects of different mineral assemblages and chemical compositions on the conduction mechanisms and efficiencies. However, the disparity of conductivity between our calculated and the previously measured results for a similar amphibole-rich eclogite sampled from the same locality suggests that trails of highly conductive rutile-ilmenite aggregates may contribute to the higher bulk-rock conductivity in the laboratory measurements. Moreover, since the calculated conductivity of eclogite and amphibolite is not high enough at the temperatures relevant to their metamorphic thermal condition, partial melts or aqueous fluids originated from the upwelling asthenosphere are more likely to explain the anomalously high electrical conductivity zones in magnetotelluric images in the Qiangtang terrane in the northern Tibetan Plateau.展开更多
The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been docu...The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.展开更多
Gold mineralization at G. R. Halli is located along the Central shear zone of Chitradurga schist belt, extending from west of Gonur, through east of G. R. Halli and C. K. Halli to east of Honnemardi, roughly parallel ...Gold mineralization at G. R. Halli is located along the Central shear zone of Chitradurga schist belt, extending from west of Gonur, through east of G. R. Halli and C. K. Halli to east of Honnemardi, roughly parallel to stratigraphic units. The NNW-SSE trending shear zone has a width of 0.5 to 1.5 km shows extensive carbonatization of metabasalts and the associated lithologies confined to NNW-WNW trending arcuate brittle-ductile zone. The sheared and silicified contact zones between carbonaceous argillite and schistose metabasalt form the potential sites for localization of mineralization. The gold is associated with sulphides mainly pyrite, arsenopyrite, galena, sphalerite, minor chalcopyrite. Textural relationship indicates two stage sulphide mineral assemblages co-relatable with two stage fluid ascents having temperature of homogenization between 125°C and 256°C. It is a typical epigenetic lode gold system, which got affected by later deformation.展开更多
Extensive laterite cappings are observed in the northern part of Kolar schist belt and they are underlain by pillowed metabasalt and partially weathered auriferous cherty intercalations. To appraise the possible distr...Extensive laterite cappings are observed in the northern part of Kolar schist belt and they are underlain by pillowed metabasalt and partially weathered auriferous cherty intercalations. To appraise the possible distribution of trace elements in both laterite cappings and in plants growing over there, a geobotanical study was conducted in the well exposed, almost flat to slightly undulating lateritic profiles in Jaderi-Holur-Nayakarahalli stretch in the northern part of Kolar schist belt. Due to humus-poor lateritic soil and scanty rainfall, the vegetation is sparse and scrubby. Shrub species are relatively more abundant than herbs and trees. The shrub species studied are Argyreia cuneata, Dodonaea viscosa, Carissa carandas, Ziziphus species, Barleria buxifolia and Atylosia scarbiocides. The herb species are mainly represented by Leucas ciliata, Pulicaria wightiana, Hyptis suaveolens, Tephrosia tinctoria, Trichodesma indicum, Stylosanthes fruticosa, Evolvulus alsinoides, Pavonia zeylanica, Orthosiphon diffusus, Waltheria indica and Stachytarpheta indica. Less frequent species included Acacia megaladena and Dolichandrone atrovirens. Geochemical analysis of different plant species and lateritic soil samples has been carried out. Cu, Cr, Zn, Ni, Co, As, Mn and Mg are in good concentration in soil but the same are impoverished in the plant species except Mn. A few analyses for Au show that its values are close to background concentration. However, plant uptake of Au appears to be better (25 - 86 ppb). The humic acid activity could have enabled gold to get absorbed by plants. While all other analyzed metals show higher range of concentration in soil compared to flora, gold shows a reverse relationship.展开更多
The Peddavura greenstone Linear Belt, NW-SE trending, is formed in the Eastern part of the Dharwar Craton of south India, extended over 62.5 sq•km in Nalgonda and Guntur districts region. The entire belt is i...The Peddavura greenstone Linear Belt, NW-SE trending, is formed in the Eastern part of the Dharwar Craton of south India, extended over 62.5 sq•km in Nalgonda and Guntur districts region. The entire belt is illustrated as Peninsular Gneiss. The Belt Study has attracted geologists for conducting further research to evaluate the crust forming process at the time of early volcanic eruption of Earth’s history. The South Indian Dharwar Craton depicts and exposes the crustal segments where geological activities took place consistently during the Precambrian. The PSB (Peddavura Schist Belt) mostly consists of meta volcanic (meta basalts), amphibolites, granites, dolerites, basaltic andesites, pegmatite and Banded Magnetite Quartzite’s (BMQ) rock types. The 20 represented rock samples made for thin section studies. Based on the Petrological studies minerals are showing uralitization, saussuritization in the granite with mylonite structures, perthite and dolerite are showing heavy metal such as rutile and other opaque minerals (Magnetite, hematite, and typical pyrite crystal) are present in different represented rock samples. The minerals are showing different alteration zones along with microstructures. Using the Petrological studies the minerals and rock types are identified in the study region.展开更多
Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential...Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.展开更多
Stream sediment sampling is a significant tool in geochemical exploration. The stream sediment composition reflects the bedrock geology, overburden cover, and metalliferous mineralization. This research article focuse...Stream sediment sampling is a significant tool in geochemical exploration. The stream sediment composition reflects the bedrock geology, overburden cover, and metalliferous mineralization. This research article focuses on assessing selected trace element concentrations in stream sediments and interpreting their inter-element relationships using multivariate statistical methods. Tagadur Ranganathaswamy Gudda and its surroundings in the Nuggihalli schist belt of southern India have been investigated in the present work. The geology of the study area is complex, with a diverse range of litho units and evidence of strong structural deformation. The area is known for its mineralization potential for chromite, vanadiferous titanomagnetite, and sulfides. The topography of the region is characterized by an undulating terrain with a radial drainage pattern. Most part of the schist belt is soil covered except the Tagadur Ranganathaswamy Gudda area. For this study, a discrete stream sediment sampling method was adopted to collect the samples. Stream sediment samples were collected using a discrete sampling method and analyzed for trace elements using an ICP-AES spectrophotometer: Fe, Cr, Ti, V, Cu, Ni, Zn, Pb, Mn, Cd, and As have been analyzed. The analytical data were statistically treated using the SPSS software, including descriptive statistics, normalization of data using natural log transformation, and factor analysis with varimax rotation. The transformed data showed a log-normal distribution, indicating the presence of geochemical anomalies. The results of the study provide valuable insights into the geochemical processes and mineralization potential of the study area. The statistical analysis helps in understanding the inter-element relationships and identifying element groups and their implications on bedrock potential mineralization. Additionally, spatial analysis using inverse distance weighting interpolation provides information about the distribution of geochemical parameters across the study area. Overall, this research contributes to the understanding of stream sediment geochemistry and its application in mineral exploration. The findings have implications for future exploration efforts and can aid in the identification of potential ore deposits in the Nuggihalli schist belt and similar geological settings.展开更多
Granitoids between the central and western arm of Ramagiri schist belt in its central part, are broadly classified into the migmatite gneiss, grey granodiorite and pink monzogranite, based on field characteristics and...Granitoids between the central and western arm of Ramagiri schist belt in its central part, are broadly classified into the migmatite gneiss, grey granodiorite and pink monzogranite, based on field characteristics and petrographic features. These granitoids belong to the Tonalite-Granodiorite-Monzogranite (TGM) suite of PGC-II. All the samples are fresh as per the CIA values, PC1-PC2 binary plot and MFW ternary plot. The granodiorites occupy the expected field in the normative IUGS, TAS, and R<sub>1</sub>-R<sub>2</sub> classification diagrams, but the monzogranites occupy the monzogranite field in the normative IUGS classification diagram and granite to alkali granite field in the rest. The granodiorites exhibit both ferroan to magnesian, alkali-calcic nature with metaluminous I type features and falls in the calc-alkaline to high K calc-alkaline series. They have high ΣREE (an average 327.905 ppm) content, and show LREE enrichment ((La/Sm)<sub>N</sub> = 3.1 - 6.8) with enriched but relatively flat HREE ((Gd/Yb)<sub>N</sub> = 1.75 - 5.26) patterns and weak negative to positive Eu anomaly (Eu/Eu* = 0.62 - 1.18). The monzogranites, on the other hand, are peraluminous, alkalic, ferroan, high K calc-alkaline, S-type granites, exhibiting relatively low ΣREE (an average 118.693 ppm) contents, strongly fractionated REE patterns with highly enriched LREE ((La/Sm)<sub>N</sub> =1.74 - 9.76), depleted HREE ((Gd/Yb)<sub>N</sub> = 0.43 - 2.21) patterns having concave upward shape, and strong negative Eu anomaly (Eu/Eu* = 0.23 - 0.89). Geothermobarometry revealed the average emplacement temperature and pressure of the granodiorites and monzogranites as 812.5℃, 8.14 ± 0.6 kbar and 775℃, 3.14 kbar, respectively. Based, on the observations, it can be concluded that the granodiorites have formed in volcanic arc setting by partial melting of the lower crust and S-type monzogranites have been produced at a relatively shallower depth in the crust, by continental crust recycling due to hydrothermal influx.展开更多
The central block of the auriferous Ramagiri schist belt, in the Eastern Dharwar Craton, India consists of bimodal volcanics(mafic-felsic), shaly BIF and metasedimentary rocks. Geochemical studies of the associated sh...The central block of the auriferous Ramagiri schist belt, in the Eastern Dharwar Craton, India consists of bimodal volcanics(mafic-felsic), shaly BIF and metasedimentary rocks. Geochemical studies of the associated shaly BIF have indicated the enrichment of the major and trace elements such as Si O2, Al2O3, Ti O2, K2 O, Mg O, Fe2O3(T),Zr, Y, Cr, Ni, alkali and alkaline earth elements indicates that the clastic component of the shaly BIF had their contribution from the contemporaneous bimodal volcanics.The concave chondrite normalized REE patterns share ubiquitously anomalous positive cerium anomaly, absence of positive europium anomaly and the overall HREE enrichment. The REE patterns resemble those from the modern day sea water, except for positive Ce anomaly. The data suggests that arc related bimodal volcanism had been the plausible source of Fe, silica, REE and other trace elements. The coherent behaviour of Fe, Ti, Mn and P with the REEs indicates that they got incorporated from Fe–Ti–Mn bearing primary minerals and secondary products like clays. The variability of REE patterns in the BIF formation samples probably results from the differences in scavenging efficiency. The BIF bears signatures of mixing of the contemporaneous clastic and chemical processes, as well as the changes accompanying diagenesis and metamorphism.The precipitation of Fe did not stop during the sedimentation in an island arc related tectonic setting. The BIF strongly lacks the signatures from hydrothermal input. The presence of positive cerium anomalies and the absence of positive europium anomalies in the shaly banded ironformations imply that iron oxidation during BIF deposition took place in shallow waters rather than at depth, at oxicanoxic boundary.展开更多
Um Solimate emerald deposit is a unique example for the well-known beryl-related schist type.Where,the Be-mineralization is restricted to NNE-trending quartz veins/lenses and as disseminated emerald grains within the ...Um Solimate emerald deposit is a unique example for the well-known beryl-related schist type.Where,the Be-mineralization is restricted to NNE-trending quartz veins/lenses and as disseminated emerald grains within the altered-metasomatic zones of phlogopite-and graphite-schists.The study of fluid inclusions for the mineralized quartz vein revealed three major groups:(i)aqueous(H_(2)O-NaCl),(ii)aqueous-carbonic(H_(2)O-CO_(2)-[CH_(4)]-NaCl),and(iii)aqueous-hydrocarbonic(H_(2)O-CH_(4))FIs.They have been further classified into five types(namely:types 1,2,3,4 and 5)according to number of phases at the room temperature(20℃)as well as microthermometric measurements.Based upon the study of fluid inclusions,the initial-ore forming fluid was supposed to be of magmatic nature,characterized by a relatively high temperature of homogenization(T_(h,tot):269–485℃)and higher salinity(8.4 wt.%–9.6 wt.%NaCl equiv.),followed by development of aqueous-carbonic inclusions at lower temperature(T_(h,tot):241–355℃)and lower salinity(3.3 wt.%–4.9 wt.%NaCl equiv.)through metamorphic dehydration/decarbonation.Methane-rich FIs were suggested to be formed as a result of local re-equilibration of graphite in reduced environment at the contact aureole of the felsic intrusion.The P-T conditions of ore formation were estimated as modal temperature between(330–370℃)and fluid pressures of about 200 MPa,corresponding to an estimated depth ranges from 7 to 10 km.The formation of emerald is closely associated with multiple events through the ore evolution,the deposition is ascribed to destabilization process of continuous metasomatic interactions and elemental substitutions between felsic-derived Be-bearing fluids with the adjacent mafic-ultramafic rocks at the zone of mineralization.展开更多
It has long been recognized that garnet has the capacity to preserve the trace element and isotopic signature of distinct metamorphic growth zones because of its high closure temperature.Combined with the large size o...It has long been recognized that garnet has the capacity to preserve the trace element and isotopic signature of distinct metamorphic growth zones because of its high closure temperature.Combined with the large size of certain garnet porphyroblast,this allows investigating variations in metamorphic conditions such as pressure,temperature,deviatoric stress,and fluid composition,which occur during subduction-related metamorphism.Here,one garnet porphyroblast of 6 cm diameter was sampled from the Yardoi schists of Xizang,and the major-,trace-,and Li-Mg isotopic compositions of distinct growth zones were determined in situ.The δ^(7)Li values range from+6.0‰to+4.1‰and follow‘S-shaped’patterns on both sides of the garnet’s core,revealing a two-stage growth process corresponding to the fluid-assisted sequential recrystallization of chlorite and micas during prograde metamorphism.By contrast,once corrected for the overprinting by retrograde metamorphism,theδ^(26)Mg values vary monotonically from−1.73‰in the core to−1.32‰in the outer rim,reflecting a single-step process interpreted to result from increasing temperature and the solid-state recrystallization of chlorite-biotite during prograde metamorphism.This different behavior of Li and Mg isotopes is interpreted to result from the fact that Li is more fluid-mobile than the major element Mg.展开更多
The kyanite quartzite from the ultrahigh-pressure metamorphic belt in the eastern Dabie Mountains is composed mainly of quartz, kyanite, talc and epidote, which contains a typical mineral assemblage of white schist. I...The kyanite quartzite from the ultrahigh-pressure metamorphic belt in the eastern Dabie Mountains is composed mainly of quartz, kyanite, talc and epidote, which contains a typical mineral assemblage of white schist. It suffered an eclogite facies metamorphism of P =(2 4±0 3) GPa and T =630℃ together with coexisting eclogite. The protolith may be an aplite replaced by high-pressure fluid of eclogite facies.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42171108 and 42101136)Sichuan Science and Technology Program(Nos.2024NSFSC2007 and2025YFHZ0273)Natural Science Starting Project of SWPU(No.2024QHZ029)。
文摘In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.
基金supported by the Natural Science Foundation of Hubei Province(2021CFA081)the Fundamental Research Funds for the Central Universities(2042023kf0210)the National Natural Science Foundation of China(42277160).
文摘A partly clumped-particles combined with joint planes model was developed to simulate the microstructure of quartz mica schist.It considers grain-scale heterogeneity including microgeometry heterogeneity and grain-scale elastic heterogeneity.Clumped-particles with larger volume and larger stiffness were used to represent stiff minerals such as quartz,the rest of unclumped particles with smaller stiffness were used to represent soft minerals such as mica.The joint planes,which have smaller stiffness and strength than mica,were used to describe schist.The extensive sensitivity studies have shown that the clump’s radius,clump’s content and joint plane’s strength affect the microscopic and macroscopic behaviors of sample.For DanBa quartz mica schist,the model calibrated uniaxial tests and well matched with the stress-strain curves,crack initiation stress and crack damage stress of laboratory test.
文摘Physico-mechanical properties are critically important parameters for rocks. This study aims to examine some of the rock properties of quartz-mica schist(QMS) rocks in a cost-effective manner by establishing correlations between non-destructive and destructive tests. Using simple regression analysis, good correlations were obtained between the pulse wave velocities and the properties of QMS rocks. The results were further improved by using multiple regression analysis as compared to those obtained by the simple linear regression analysis. The results were also compared to the ones obtained by other empirical equations available. The general equations encompassing all types of rocks did not give reliable results of rock properties and showed large relative errors, ranging from 23% to 1146%. It is suggested that empirical correlations must be investigated separately for different types of rocks. The general empirical equations should not be used for the design and planning purposes before they are verified at least on one rock sample from the project site, as they may contain large unacceptable errors.
基金project by PVSR(no.GAP 538-28[PVSR]),funded by the Department of Science and Technology,Government of India.
文摘The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+AI]) (0.68-0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33-0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, AI, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.
基金supported by the Fundamental Research Funds for the Central Universities,CHD (300102260708)the National Natural Science Foundation of China (No. 41831286)the Transportation Construction Science and Technology Program of Sichuan Province (No. 2015A1-3)。
文摘Many geological engineering hazards are closely related to the dynamic mechanical properties of rock materials.However,most existing studies on the dynamic mechanical properties of rock materials were conducted on the hard rocks such as sandstone,granite,limestone,and marble,whereas soft rocks,such as schist,are less studied.Therefore,in this study,a series of triaxial impact tests were conducted on dry and saturated schist by employing a modified triaxial split Hopkinson pressure bar system to reveal the coupling effects of water,strain rate,and triaxial confining pressure on the mechanical properties of schist.The results show that schist is a type of watersensitive rock and the stress-strain curve of saturated schist has apparent ductility.The effects of strain rate on dynamic strain,deformation modulus and peak stress were analyzed.The results also show that the dynamic peak stress is affected by the combined softening effect and viscous effect of water under impact loading.Finally,it was found that the failure mode of schist belongs to typical axial tensile failure under uniaxial impact tests,and shear failure is the main failure mode under triaxial impact tests.With the increase in confining pressure,the failure modes of schist change from tensile failure to shear failure.This research can provide useful parameters for geological engineering hazard prevention in mountain areas.
文摘Plate tectonic activity has played a critical role in the development of petrotectonic associations in the Kadiri schist belt. The calc alkaline association of basalt, andesite, dacite and rhyolite (BADR) is the signature volcanic rock suite of the convergent margin. The N-S belt has gone below the unconformity plane of Cuddapah sediments. In the northern part geochemical and structural attributes of the Kadiri greenstone belt is studied along with microscopic observations of selected samples. Harker diagram plots of major elements generally indicate a liquid line of descent from a common source, such that BADR rocks are derived from a common parent magma of basaltic to andesitic composition. These calc-alkaline volcanic rocks are formed at convergent margins where more silicic rocks represent more highly fractionated melt. All the litho-units of this greenstone belt indicate crush and strain effects. The stretched pebbles in the deformed volcanic matrix with tectonite development along with associated greenschist facies metamorphism, alteration and hydration is remarkable. Flow foliation plane with N-S strike and very low angle (5~ to 10~) easterly dip and N-S axial planar schistosity formed due to later phase isoclinal folding can be clearly identified in the field. Basic intrusives are quite common in the surrounding area. All the observations including the field setting and geochemistry clearly demonstrate ocean-continent subduction as the tectonic environment of the study area.
基金supported by the National Natural Science Foundation of China (Nos. 41902222,41502059)111 Project of China (No. BP0719022)。
文摘Understanding the electrical conductivity of high pressure metamorphic rocks is essential to constrain the compositions in the subduction zone and continental crust. In this study, we calculated the electrical conductivity for such rocks sampled from the central Qiangtang metamorphic belt in the northern Tibetan Plateau. The results reveal that, when aqueous fluids are absent, the conductivity of meta-mafic rocks(e.g., eclogite and amphibolite) is strikingly higher than that of meta-felsic rocks(e.g., garnet-quartz-mica schist). The conductivity of eclogite decreases due to the enrichment of amphibole, but this effect is diminished when a critical degree of amphibolization is reached. Our calculated conductivity of eclogite and amphibolite differs greatly from the experimentally derived results for the eclogites from other localities, partly owing to the strong effects of different mineral assemblages and chemical compositions on the conduction mechanisms and efficiencies. However, the disparity of conductivity between our calculated and the previously measured results for a similar amphibole-rich eclogite sampled from the same locality suggests that trails of highly conductive rutile-ilmenite aggregates may contribute to the higher bulk-rock conductivity in the laboratory measurements. Moreover, since the calculated conductivity of eclogite and amphibolite is not high enough at the temperatures relevant to their metamorphic thermal condition, partial melts or aqueous fluids originated from the upwelling asthenosphere are more likely to explain the anomalously high electrical conductivity zones in magnetotelluric images in the Qiangtang terrane in the northern Tibetan Plateau.
基金UGC-Dr.D.S.Kothari Postdoctoral FellowshipNo.F.4-2/2006(BSR)/ES/20-21/0005supported under a research grant[Mo ES/P.O.(Geo)/101(v)/2017]to SK。
文摘The field and microstructural features coupled with mineral chemical data from microgranular enclave(ME)and host Mesoproterozoic Kanigiri granite(KG)pluton of Nellore Schist Belt(NSB),Southeastern India,have been documented in order to infer the likely processes responsible for the origin and evolution of ME and host KG magma.The ME and host KG bear the same mineral assemblages barring the KG which does not contain amphibole;however,they are modally disequilibrated.The ME in KG is originated due to multiple intrusions of ME magmas into the crystallizing host KG magma chamber.Field and textural features indicate the dynamic magma flow,mingling,and undercooling of the ME against a relatively cooler surface of host KG magma.The presence of NSB country rock xenoliths and its diffuse boundaries suggest the intrusive relation and marginal assimilation by the intruding KG magma.The occasional cumulate texture in the ME appears to have formed by the accumulation of early-formed minerals that crystallized rapidly in the ME magma globules.The ME shows the magmatically deform features developed due to the flowage and erosion by the subsequent intrusions of ME magma pulses into the crystallizing host KG magma chamber.The ME amphiboles show unusual composition as ferro-edenitic hornblende to potassian-hastingsitic hornblende,that crystallized in the subalkaline-alkaline transition,low fO_(2)(reducing to mildly oxidizing)magma.The unusual extremely low Mg/Mg+Fe^(t)=0.015(avg.)of ME amphiboles may be related to the changing physico-chemical(P,T,fO_(2),and H_(2)O)condition of the ME magma or they might have crystallized in equilibrium with more evolved KG magma.The KG(FeOt/MgO=37.04,avg.)and ME(FeO~t/MgO=77.72,avg.)biotites are siderophyllite,and buffered between QFM and NNO syn-crystallizing in the water undersaturated(H_(2O)≈3.58 wt.%in KG;≈3.53wt.%in ME),alkaline anorogenic(A-type)host magmas that were emplaced at mid-crustal(4–5 kbar;17 km)depth.Field,microtextural and mineral chemical evidences suggest that the alkaline KG magma originated from crustal source and evolved through synchronous fractionation,mixing,and mingling with coeval ME magmas in the KG magma chamber.
文摘Gold mineralization at G. R. Halli is located along the Central shear zone of Chitradurga schist belt, extending from west of Gonur, through east of G. R. Halli and C. K. Halli to east of Honnemardi, roughly parallel to stratigraphic units. The NNW-SSE trending shear zone has a width of 0.5 to 1.5 km shows extensive carbonatization of metabasalts and the associated lithologies confined to NNW-WNW trending arcuate brittle-ductile zone. The sheared and silicified contact zones between carbonaceous argillite and schistose metabasalt form the potential sites for localization of mineralization. The gold is associated with sulphides mainly pyrite, arsenopyrite, galena, sphalerite, minor chalcopyrite. Textural relationship indicates two stage sulphide mineral assemblages co-relatable with two stage fluid ascents having temperature of homogenization between 125°C and 256°C. It is a typical epigenetic lode gold system, which got affected by later deformation.
文摘Extensive laterite cappings are observed in the northern part of Kolar schist belt and they are underlain by pillowed metabasalt and partially weathered auriferous cherty intercalations. To appraise the possible distribution of trace elements in both laterite cappings and in plants growing over there, a geobotanical study was conducted in the well exposed, almost flat to slightly undulating lateritic profiles in Jaderi-Holur-Nayakarahalli stretch in the northern part of Kolar schist belt. Due to humus-poor lateritic soil and scanty rainfall, the vegetation is sparse and scrubby. Shrub species are relatively more abundant than herbs and trees. The shrub species studied are Argyreia cuneata, Dodonaea viscosa, Carissa carandas, Ziziphus species, Barleria buxifolia and Atylosia scarbiocides. The herb species are mainly represented by Leucas ciliata, Pulicaria wightiana, Hyptis suaveolens, Tephrosia tinctoria, Trichodesma indicum, Stylosanthes fruticosa, Evolvulus alsinoides, Pavonia zeylanica, Orthosiphon diffusus, Waltheria indica and Stachytarpheta indica. Less frequent species included Acacia megaladena and Dolichandrone atrovirens. Geochemical analysis of different plant species and lateritic soil samples has been carried out. Cu, Cr, Zn, Ni, Co, As, Mn and Mg are in good concentration in soil but the same are impoverished in the plant species except Mn. A few analyses for Au show that its values are close to background concentration. However, plant uptake of Au appears to be better (25 - 86 ppb). The humic acid activity could have enabled gold to get absorbed by plants. While all other analyzed metals show higher range of concentration in soil compared to flora, gold shows a reverse relationship.
文摘The Peddavura greenstone Linear Belt, NW-SE trending, is formed in the Eastern part of the Dharwar Craton of south India, extended over 62.5 sq•km in Nalgonda and Guntur districts region. The entire belt is illustrated as Peninsular Gneiss. The Belt Study has attracted geologists for conducting further research to evaluate the crust forming process at the time of early volcanic eruption of Earth’s history. The South Indian Dharwar Craton depicts and exposes the crustal segments where geological activities took place consistently during the Precambrian. The PSB (Peddavura Schist Belt) mostly consists of meta volcanic (meta basalts), amphibolites, granites, dolerites, basaltic andesites, pegmatite and Banded Magnetite Quartzite’s (BMQ) rock types. The 20 represented rock samples made for thin section studies. Based on the Petrological studies minerals are showing uralitization, saussuritization in the granite with mylonite structures, perthite and dolerite are showing heavy metal such as rutile and other opaque minerals (Magnetite, hematite, and typical pyrite crystal) are present in different represented rock samples. The minerals are showing different alteration zones along with microstructures. Using the Petrological studies the minerals and rock types are identified in the study region.
文摘Petrographic and geochemical studies of syenite-looking Ayetoro and Sasaro plutons within Igarra Schist Belt were carried out in order to classify them and determine their tectonic setting and mineralization potential. Petrographic study and geochemical classification revealed that while Ayetoro boss is microgranite constituting an aggregate of medium grained muscovite, quartz and biotite minerals, Sasaro stock is micromonzonite made up of medium grained albite, orthoclase, biotite, hornblende and pyroxene. Geotectonic setting showed the boss and stock are orogenic, probably derived from the same upper mantle magma as Igarra batholith that got contaminated by crustal materials responsible for their difference in lithology. Their mineralization potential showed that the massive Ayetoro microgranite with no appreciable trace-element contents cannot serve as host of any metallic deposit, and should be suitable for industrial applications. Whereas, the silicified, highly sheared Sasaro monzonite, with elevated level of some trace elements contents as Ag, Au and Cu, could harbor Ag-Au-Cu deposit.
文摘Stream sediment sampling is a significant tool in geochemical exploration. The stream sediment composition reflects the bedrock geology, overburden cover, and metalliferous mineralization. This research article focuses on assessing selected trace element concentrations in stream sediments and interpreting their inter-element relationships using multivariate statistical methods. Tagadur Ranganathaswamy Gudda and its surroundings in the Nuggihalli schist belt of southern India have been investigated in the present work. The geology of the study area is complex, with a diverse range of litho units and evidence of strong structural deformation. The area is known for its mineralization potential for chromite, vanadiferous titanomagnetite, and sulfides. The topography of the region is characterized by an undulating terrain with a radial drainage pattern. Most part of the schist belt is soil covered except the Tagadur Ranganathaswamy Gudda area. For this study, a discrete stream sediment sampling method was adopted to collect the samples. Stream sediment samples were collected using a discrete sampling method and analyzed for trace elements using an ICP-AES spectrophotometer: Fe, Cr, Ti, V, Cu, Ni, Zn, Pb, Mn, Cd, and As have been analyzed. The analytical data were statistically treated using the SPSS software, including descriptive statistics, normalization of data using natural log transformation, and factor analysis with varimax rotation. The transformed data showed a log-normal distribution, indicating the presence of geochemical anomalies. The results of the study provide valuable insights into the geochemical processes and mineralization potential of the study area. The statistical analysis helps in understanding the inter-element relationships and identifying element groups and their implications on bedrock potential mineralization. Additionally, spatial analysis using inverse distance weighting interpolation provides information about the distribution of geochemical parameters across the study area. Overall, this research contributes to the understanding of stream sediment geochemistry and its application in mineral exploration. The findings have implications for future exploration efforts and can aid in the identification of potential ore deposits in the Nuggihalli schist belt and similar geological settings.
文摘Granitoids between the central and western arm of Ramagiri schist belt in its central part, are broadly classified into the migmatite gneiss, grey granodiorite and pink monzogranite, based on field characteristics and petrographic features. These granitoids belong to the Tonalite-Granodiorite-Monzogranite (TGM) suite of PGC-II. All the samples are fresh as per the CIA values, PC1-PC2 binary plot and MFW ternary plot. The granodiorites occupy the expected field in the normative IUGS, TAS, and R<sub>1</sub>-R<sub>2</sub> classification diagrams, but the monzogranites occupy the monzogranite field in the normative IUGS classification diagram and granite to alkali granite field in the rest. The granodiorites exhibit both ferroan to magnesian, alkali-calcic nature with metaluminous I type features and falls in the calc-alkaline to high K calc-alkaline series. They have high ΣREE (an average 327.905 ppm) content, and show LREE enrichment ((La/Sm)<sub>N</sub> = 3.1 - 6.8) with enriched but relatively flat HREE ((Gd/Yb)<sub>N</sub> = 1.75 - 5.26) patterns and weak negative to positive Eu anomaly (Eu/Eu* = 0.62 - 1.18). The monzogranites, on the other hand, are peraluminous, alkalic, ferroan, high K calc-alkaline, S-type granites, exhibiting relatively low ΣREE (an average 118.693 ppm) contents, strongly fractionated REE patterns with highly enriched LREE ((La/Sm)<sub>N</sub> =1.74 - 9.76), depleted HREE ((Gd/Yb)<sub>N</sub> = 0.43 - 2.21) patterns having concave upward shape, and strong negative Eu anomaly (Eu/Eu* = 0.23 - 0.89). Geothermobarometry revealed the average emplacement temperature and pressure of the granodiorites and monzogranites as 812.5℃, 8.14 ± 0.6 kbar and 775℃, 3.14 kbar, respectively. Based, on the observations, it can be concluded that the granodiorites have formed in volcanic arc setting by partial melting of the lower crust and S-type monzogranites have been produced at a relatively shallower depth in the crust, by continental crust recycling due to hydrothermal influx.
基金Department of Science and Technology, New Delhi under DST Fast Track Project scheme No. HR/OY/A-16/98
文摘The central block of the auriferous Ramagiri schist belt, in the Eastern Dharwar Craton, India consists of bimodal volcanics(mafic-felsic), shaly BIF and metasedimentary rocks. Geochemical studies of the associated shaly BIF have indicated the enrichment of the major and trace elements such as Si O2, Al2O3, Ti O2, K2 O, Mg O, Fe2O3(T),Zr, Y, Cr, Ni, alkali and alkaline earth elements indicates that the clastic component of the shaly BIF had their contribution from the contemporaneous bimodal volcanics.The concave chondrite normalized REE patterns share ubiquitously anomalous positive cerium anomaly, absence of positive europium anomaly and the overall HREE enrichment. The REE patterns resemble those from the modern day sea water, except for positive Ce anomaly. The data suggests that arc related bimodal volcanism had been the plausible source of Fe, silica, REE and other trace elements. The coherent behaviour of Fe, Ti, Mn and P with the REEs indicates that they got incorporated from Fe–Ti–Mn bearing primary minerals and secondary products like clays. The variability of REE patterns in the BIF formation samples probably results from the differences in scavenging efficiency. The BIF bears signatures of mixing of the contemporaneous clastic and chemical processes, as well as the changes accompanying diagenesis and metamorphism.The precipitation of Fe did not stop during the sedimentation in an island arc related tectonic setting. The BIF strongly lacks the signatures from hydrothermal input. The presence of positive cerium anomalies and the absence of positive europium anomalies in the shaly banded ironformations imply that iron oxidation during BIF deposition took place in shallow waters rather than at depth, at oxicanoxic boundary.
文摘Um Solimate emerald deposit is a unique example for the well-known beryl-related schist type.Where,the Be-mineralization is restricted to NNE-trending quartz veins/lenses and as disseminated emerald grains within the altered-metasomatic zones of phlogopite-and graphite-schists.The study of fluid inclusions for the mineralized quartz vein revealed three major groups:(i)aqueous(H_(2)O-NaCl),(ii)aqueous-carbonic(H_(2)O-CO_(2)-[CH_(4)]-NaCl),and(iii)aqueous-hydrocarbonic(H_(2)O-CH_(4))FIs.They have been further classified into five types(namely:types 1,2,3,4 and 5)according to number of phases at the room temperature(20℃)as well as microthermometric measurements.Based upon the study of fluid inclusions,the initial-ore forming fluid was supposed to be of magmatic nature,characterized by a relatively high temperature of homogenization(T_(h,tot):269–485℃)and higher salinity(8.4 wt.%–9.6 wt.%NaCl equiv.),followed by development of aqueous-carbonic inclusions at lower temperature(T_(h,tot):241–355℃)and lower salinity(3.3 wt.%–4.9 wt.%NaCl equiv.)through metamorphic dehydration/decarbonation.Methane-rich FIs were suggested to be formed as a result of local re-equilibration of graphite in reduced environment at the contact aureole of the felsic intrusion.The P-T conditions of ore formation were estimated as modal temperature between(330–370℃)and fluid pressures of about 200 MPa,corresponding to an estimated depth ranges from 7 to 10 km.The formation of emerald is closely associated with multiple events through the ore evolution,the deposition is ascribed to destabilization process of continuous metasomatic interactions and elemental substitutions between felsic-derived Be-bearing fluids with the adjacent mafic-ultramafic rocks at the zone of mineralization.
基金supported by the National Natural Science Foundation of China(Nos.41729001,42073003,41673031).
文摘It has long been recognized that garnet has the capacity to preserve the trace element and isotopic signature of distinct metamorphic growth zones because of its high closure temperature.Combined with the large size of certain garnet porphyroblast,this allows investigating variations in metamorphic conditions such as pressure,temperature,deviatoric stress,and fluid composition,which occur during subduction-related metamorphism.Here,one garnet porphyroblast of 6 cm diameter was sampled from the Yardoi schists of Xizang,and the major-,trace-,and Li-Mg isotopic compositions of distinct growth zones were determined in situ.The δ^(7)Li values range from+6.0‰to+4.1‰and follow‘S-shaped’patterns on both sides of the garnet’s core,revealing a two-stage growth process corresponding to the fluid-assisted sequential recrystallization of chlorite and micas during prograde metamorphism.By contrast,once corrected for the overprinting by retrograde metamorphism,theδ^(26)Mg values vary monotonically from−1.73‰in the core to−1.32‰in the outer rim,reflecting a single-step process interpreted to result from increasing temperature and the solid-state recrystallization of chlorite-biotite during prograde metamorphism.This different behavior of Li and Mg isotopes is interpreted to result from the fact that Li is more fluid-mobile than the major element Mg.
文摘The kyanite quartzite from the ultrahigh-pressure metamorphic belt in the eastern Dabie Mountains is composed mainly of quartz, kyanite, talc and epidote, which contains a typical mineral assemblage of white schist. It suffered an eclogite facies metamorphism of P =(2 4±0 3) GPa and T =630℃ together with coexisting eclogite. The protolith may be an aplite replaced by high-pressure fluid of eclogite facies.