Six-spoke Sun wheels have previously been described by us from Mesopotamia, rock-carvings in Sweden and a golden sky dome from Sweden. The division of the Sun wheel into six segments refers to the six double-months of...Six-spoke Sun wheels have previously been described by us from Mesopotamia, rock-carvings in Sweden and a golden sky dome from Sweden. The division of the Sun wheel into six segments refers to the six double-months of 60 days, and a full annual cycle of 360 days. In this paper we report the findings of a stone carving with 9 six-spoke Sun wheels and two solar eclipses found and depicted in 1840 in Denmark. The spokes in the nine Sun wheels are in N-S, E-W and NW-SE direction. The NW-SE line co-insides with the sunset at summer solstice and sunrise at winter solstice, which is in full agreement with the alignment of the famous stone-ship of Ales Stones in southernmost Sweden. The new stone carving in Denmark provides a confirmation of the deep knowledge in astronomy existing among the Bronze Age people, all from Mesopotamia up the Scandinavia.展开更多
In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea sur...In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea surface of Arctic seas not covered by ice is conducive to the formation of a monsoon like system. On the other hand, the predominance of the cyclonic regime during all seasons makes it difficult to answer the question of whether the Arctic region belongs to the monsoon type pattern. In this study, the monsoon features of atmospheric circulation over the Barents and Kara Seas were analysed. To extract specific monsoon signs, atmospheric circulation systems (separately for areas of each sea) were divided into ten weather types. Their appearance and statistics were compared with indicators of regional circulation. A significant part of intra-annual monsoon variability is associated with the configuration of such modes as the North Atlantic Oscillation and the <em>Scandinavia</em> teleconnection patterns. For example, during the winter season, the monsoon currents (from land to sea) occur only with a positive North Atlantic Oscillation index. With the prevalence of other modes of variability, the direction of the winds can be different, and the regular monsoon circulation pattern is changed by chaotic regime. In summer, northern streams (from sea to land) are realized on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea. As for anomalies, the nature of the monsoons is manifested in the statistics of extreme winds even without selecting data on the regimes of variability. So, in winter, maximum speeds fall on the southern streams, and in the summer—on the northern ones. Large precipitation anomalies during all seasons, as one would expect, are encountered most often with the cyclonic type of circulation.展开更多
Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were...Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and(fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.展开更多
文摘Six-spoke Sun wheels have previously been described by us from Mesopotamia, rock-carvings in Sweden and a golden sky dome from Sweden. The division of the Sun wheel into six segments refers to the six double-months of 60 days, and a full annual cycle of 360 days. In this paper we report the findings of a stone carving with 9 six-spoke Sun wheels and two solar eclipses found and depicted in 1840 in Denmark. The spokes in the nine Sun wheels are in N-S, E-W and NW-SE direction. The NW-SE line co-insides with the sunset at summer solstice and sunrise at winter solstice, which is in full agreement with the alignment of the famous stone-ship of Ales Stones in southernmost Sweden. The new stone carving in Denmark provides a confirmation of the deep knowledge in astronomy existing among the Bronze Age people, all from Mesopotamia up the Scandinavia.
文摘In the Arctic (mainly in its European sector) there is statistically detectable seasonal reversal wind pattern. The combination of seasonally warm (cold) land surfaces in arctic areas together with cool (cool) sea surface of Arctic seas not covered by ice is conducive to the formation of a monsoon like system. On the other hand, the predominance of the cyclonic regime during all seasons makes it difficult to answer the question of whether the Arctic region belongs to the monsoon type pattern. In this study, the monsoon features of atmospheric circulation over the Barents and Kara Seas were analysed. To extract specific monsoon signs, atmospheric circulation systems (separately for areas of each sea) were divided into ten weather types. Their appearance and statistics were compared with indicators of regional circulation. A significant part of intra-annual monsoon variability is associated with the configuration of such modes as the North Atlantic Oscillation and the <em>Scandinavia</em> teleconnection patterns. For example, during the winter season, the monsoon currents (from land to sea) occur only with a positive North Atlantic Oscillation index. With the prevalence of other modes of variability, the direction of the winds can be different, and the regular monsoon circulation pattern is changed by chaotic regime. In summer, northern streams (from sea to land) are realized on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea. As for anomalies, the nature of the monsoons is manifested in the statistics of extreme winds even without selecting data on the regimes of variability. So, in winter, maximum speeds fall on the southern streams, and in the summer—on the northern ones. Large precipitation anomalies during all seasons, as one would expect, are encountered most often with the cyclonic type of circulation.
基金partly sponsored by Color Line Aksjeselskap, Oslo
文摘Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio(Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and(fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.