In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections h...Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.展开更多
According to the description effect range, the method of scaling system in cartography is with the precision of four grades: nominal scaling, ordinal scaling, interval scaling and ratio scaling. The authors have rese...According to the description effect range, the method of scaling system in cartography is with the precision of four grades: nominal scaling, ordinal scaling, interval scaling and ratio scaling. The authors have researched their innate character and inherent relations. The essence of evaluation partialordering set (A ,≤) is the mapping of evaluation object (X, ≤) under fixed condition. The collection and classification of xi ∈ X corresponds how to express Aj ∈ A, i.e. , V xi ∈ X→f(xi ) = Aj → A, Aj is the image of xi under mapping f. The function relation between evaluation partial-ordering set (A, ≤) and evaluation object (X, ≤) is decided by the space character and the way of collection and classification. The different space character and way of collection and classification will produce the different express method and evaluation result, accordingly the authors give out the mathematical definitions for nominal scaling, ordinal scaling, interval scaling and ratio scaling respectively. These results have been proved through the examples.展开更多
Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corro...Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.展开更多
Slippery liquid-infused porous surfaces(SLIPS)with exceptional liquid repellency and extremely low sliding angles demonstrate significant potential for applications in anti-corrosion,anti-fouling,and anti-scaling.Howe...Slippery liquid-infused porous surfaces(SLIPS)with exceptional liquid repellency and extremely low sliding angles demonstrate significant potential for applications in anti-corrosion,anti-fouling,and anti-scaling.However,the poor stability of the oil layer restricts its practical applications.Herein,a durable SLIPS coating with highly stable oil layer was developed by combining hierarchical porous structures with covalent interpenetrating networks and multiple interfacial interactions.The hierarchical porous structure was constructed via urea thermal decomposition with in situ hybridization of SiO_(2)and embedded carbon nanotubes(CNTs).Furthermore,the oil layer was chemically immobilized on the coating surface using methylenediphenyl diisocyanate(MDI)as a molecular bridge,leveraging interfacial covalent bonding andπ-OH interactions,which significantly enhanced its anti-corrosion properties,with an initial|Z|_(0.01 Hz)of1.22×10^(8)Ωcm^(2).Dynamic scaling experiments revealed a 96.47%improvement in scaling inhibition efficiency compared to conventional superhydrophobic coatings,showing its excellent anti-scaling properties.Owing to the durability and liquidity of oi layer,the prepared FEVE-SiO_(2)/CNTs@MDI SLIPS coating maintained outstanding slippery performance(water sliding angle<10°)even after 14 days of underwater immersion.Additionally,the coating also exhibited excellent thermal stability(120°C),remarkable shear resistance(5000 rpm),and ultraviolet resistance performance.Therefore,the prepared FEVE-SiO_(2)/CNTs@MDI SLIPS coating has broad practical application prospects in the field of industrial oilfield pipeline protection.展开更多
Context:In the dynamic and constantly evolving world of agriculture,promoting innovation and ensuring sustainable growth are crucial.A planned division of tasks and responsibilities within agricultural systems,known a...Context:In the dynamic and constantly evolving world of agriculture,promoting innovation and ensuring sustainable growth are crucial.A planned division of tasks and responsibilities within agricultural systems,known as efficient role allocation,is necessary to make this vision a reality.Climate-smart agriculture(CSA)movement enjoys widespread support from the research and development community because it seeks to improve livelihoods in response to climate change.Objective:This study explores an innovative approach to optimizing role assignment within agricultural frameworks to effectively scale AI-driven innovations.By leveraging advanced algorithms and machine learning techniques,the research aims to streamline the allocation of tasks and responsibilities among various stakeholders,including farmers,agronomists,technicians,and AI systems.Methods:The methodology involves the development of a dynamic role assignment model that considers factors such as expertise,resource availability,and real-time environmental data.This model is tested in various agricultural scenarios to evaluate its impact on operational efficiency and innovation scalability.The findings demonstrate that optimized role assignment not only enhances the performance of AI applications but also fosters a collaborative ecosystem that is adaptable to changing agricultural demands.Results:&Discussion:This research finds a number of elements that affect how well duties are distributed within agricultural frameworks,including organizational frameworks,leadership,resource accessibility,and cooperative efforts through AI.In addition to advocating for its comprehensive integration into the sector's culture,this paper offers a collection of best practices and techniques for optimizing role allocation in agriculture.Additionally,the study gives a thorough overview,summary,and analysis of a few papers that are specifically concerned with scaling innovation in the field of agricultural research for development.Significance:Furthermore,the study highlights the potential of AI to transform traditional farming practices,reduce labor-intensive processes,and improve decision-making accuracy.The proposed approach serves as a blueprint for agricultural enterprises aiming to adopt AI technologies while ensuring optimal utilization of human and technological resources.By addressing the challenges of role ambiguity and resource allocation,this research contributes to the broader goal of achieving sustainable and resilient agricultural systems through technological innovation.展开更多
Kibble-Zurek scaling is the scaling of the density of topological defects formed via the Kibble-Zurek mechanism with respect to the rate at which a system is cooled across a continuous phase transition.Recently,the de...Kibble-Zurek scaling is the scaling of the density of topological defects formed via the Kibble-Zurek mechanism with respect to the rate at which a system is cooled across a continuous phase transition.Recently,the density of the topological defects formed via the Kibble-Zurek mechanism was estimated for a system cooled through a first-order phase transition rather than conventional continuous transitions.Here we address the problem of whether such defects generated across a first-order phase transition exhibit Kibble-Zurek scaling similar to the case in continuous phase transitions.We show that any possible Kibble-Zurek scaling for the topological defects can only be a very rough approximation due to an intrinsic field responsible for the scaling.However,complete universal scaling for other properties does exist.展开更多
Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction len...Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.展开更多
We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,w...We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,we derive the exact upper limit of physical energy level.Further,we derive some recursive relations for energy matrix elements of the potential and other similar operators in the context of Morse oscillator theory.展开更多
Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play i...Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.展开更多
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circu...Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.展开更多
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
文摘Monte Carlo(MC) simulations have been performed to refine the estimation of the correction-toscaling exponent ω in the 2D φ^(4)model,which belongs to one of the most fundamental universality classes.If corrections have the form ∝ L^(-ω),then we find ω=1.546(30) andω=1.509(14) as the best estimates.These are obtained from the finite-size scaling of the susceptibility data in the range of linear lattice sizes L ∈[128,2048] at the critical value of the Binder cumulant and from the scaling of the corresponding pseudocritical couplings within L∈[64,2048].These values agree with several other MC estimates at the assumption of the power-law corrections and are comparable with the known results of the ε-expansion.In addition,we have tested the consistency with the scaling corrections of the form ∝ L^(-4/3),∝L^(-4/3)In L and ∝L^(-4/3)/ln L,which might be expected from some considerations of the renormalization group and Coulomb gas model.The latter option is consistent with our MC data.Our MC results served as a basis for a critical reconsideration of some earlier theoretical conjectures and scaling assumptions.In particular,we have corrected and refined our previous analysis by grouping Feynman diagrams.The renewed analysis gives ω≈4-d-2η as some approximation for spatial dimensions d <4,or ω≈1.5 in two dimensions.
文摘According to the description effect range, the method of scaling system in cartography is with the precision of four grades: nominal scaling, ordinal scaling, interval scaling and ratio scaling. The authors have researched their innate character and inherent relations. The essence of evaluation partialordering set (A ,≤) is the mapping of evaluation object (X, ≤) under fixed condition. The collection and classification of xi ∈ X corresponds how to express Aj ∈ A, i.e. , V xi ∈ X→f(xi ) = Aj → A, Aj is the image of xi under mapping f. The function relation between evaluation partial-ordering set (A, ≤) and evaluation object (X, ≤) is decided by the space character and the way of collection and classification. The different space character and way of collection and classification will produce the different express method and evaluation result, accordingly the authors give out the mathematical definitions for nominal scaling, ordinal scaling, interval scaling and ratio scaling respectively. These results have been proved through the examples.
基金funded by the Key R&D Program of Henan,China(No.241111321000)China Geological Survey Program(DD20221676).
文摘Tai'an city,located in Shandong Province,China,is rich in geothermal resources,characterized by shallow burial,high water temperature,and abundant water supply,making them high value for exploitation.However,corrosion and scaling are main challenges that hinder the widespread application and effective utilization of geothermal energy.This study focuses on the typical geothermal fields in Tai'an,employing qualitative evaluations of the geochemical saturation index with temperature,combined with the corrosion coefficient,Ryznar index,boiler scale,and hard scale assessment,to predict corrosion and scaling trends in the geothermal water of the study area.The results show that the hydrochemical types of geothermal water in the study area are predominantly Na-Ca-SO^(4)and Ca-Na-SO_(4)-HCO_(3),with the water being weakly alkaline.Simulations of saturation index changes with temperature reveal that calcium carbonate scaling is dominant scaling type in the area,with no evidence of calcium sulfate scaling.In the Daiyue Qiaogou geothermal field,the water exhibited corrosive bubble water properties,moderate calcium carbonate scaling,and abundant boiler scaling.Feicheng Anjiazhuang geothermal field showed non-corrosive bubble water,moderate calcium carbonate scaling,and significant boiler scaling.The Daidao'an geothermal field presented corrosive semi-bubble water,moderate calcium carbonate scaling,and abundant boiler scaling.The findings provide a foundation for the efficient exploitation of geothermal resources in the region.Implementing anti-corrosion and scale prevention measures can significantly enhance the utilization of geothermal energy.
基金financially supported by the National Natural Science Foundation of China(No.52203136)Heilongjiang Provincial Natural Science Foundation for Excellent Youth Fund(No.YQ2024E007)+4 种基金Natural Science Foundation of Heilongjiang Province(No.LH2022E015)the China Postdoctoral Science Foundation(No.2024MD753912)Heilongjiang Postdoctoral Fund(No.LBH-Z24107)Northeast Petroleum University Cultivation Foundation for‘National fund’(No.2023GPL-04)Northeast Petroleum University Scientic Research Foundation for Advanced Talents(Nos.2021KQ05,2019KQ85)
文摘Slippery liquid-infused porous surfaces(SLIPS)with exceptional liquid repellency and extremely low sliding angles demonstrate significant potential for applications in anti-corrosion,anti-fouling,and anti-scaling.However,the poor stability of the oil layer restricts its practical applications.Herein,a durable SLIPS coating with highly stable oil layer was developed by combining hierarchical porous structures with covalent interpenetrating networks and multiple interfacial interactions.The hierarchical porous structure was constructed via urea thermal decomposition with in situ hybridization of SiO_(2)and embedded carbon nanotubes(CNTs).Furthermore,the oil layer was chemically immobilized on the coating surface using methylenediphenyl diisocyanate(MDI)as a molecular bridge,leveraging interfacial covalent bonding andπ-OH interactions,which significantly enhanced its anti-corrosion properties,with an initial|Z|_(0.01 Hz)of1.22×10^(8)Ωcm^(2).Dynamic scaling experiments revealed a 96.47%improvement in scaling inhibition efficiency compared to conventional superhydrophobic coatings,showing its excellent anti-scaling properties.Owing to the durability and liquidity of oi layer,the prepared FEVE-SiO_(2)/CNTs@MDI SLIPS coating maintained outstanding slippery performance(water sliding angle<10°)even after 14 days of underwater immersion.Additionally,the coating also exhibited excellent thermal stability(120°C),remarkable shear resistance(5000 rpm),and ultraviolet resistance performance.Therefore,the prepared FEVE-SiO_(2)/CNTs@MDI SLIPS coating has broad practical application prospects in the field of industrial oilfield pipeline protection.
文摘Context:In the dynamic and constantly evolving world of agriculture,promoting innovation and ensuring sustainable growth are crucial.A planned division of tasks and responsibilities within agricultural systems,known as efficient role allocation,is necessary to make this vision a reality.Climate-smart agriculture(CSA)movement enjoys widespread support from the research and development community because it seeks to improve livelihoods in response to climate change.Objective:This study explores an innovative approach to optimizing role assignment within agricultural frameworks to effectively scale AI-driven innovations.By leveraging advanced algorithms and machine learning techniques,the research aims to streamline the allocation of tasks and responsibilities among various stakeholders,including farmers,agronomists,technicians,and AI systems.Methods:The methodology involves the development of a dynamic role assignment model that considers factors such as expertise,resource availability,and real-time environmental data.This model is tested in various agricultural scenarios to evaluate its impact on operational efficiency and innovation scalability.The findings demonstrate that optimized role assignment not only enhances the performance of AI applications but also fosters a collaborative ecosystem that is adaptable to changing agricultural demands.Results:&Discussion:This research finds a number of elements that affect how well duties are distributed within agricultural frameworks,including organizational frameworks,leadership,resource accessibility,and cooperative efforts through AI.In addition to advocating for its comprehensive integration into the sector's culture,this paper offers a collection of best practices and techniques for optimizing role allocation in agriculture.Additionally,the study gives a thorough overview,summary,and analysis of a few papers that are specifically concerned with scaling innovation in the field of agricultural research for development.Significance:Furthermore,the study highlights the potential of AI to transform traditional farming practices,reduce labor-intensive processes,and improve decision-making accuracy.The proposed approach serves as a blueprint for agricultural enterprises aiming to adopt AI technologies while ensuring optimal utilization of human and technological resources.By addressing the challenges of role ambiguity and resource allocation,this research contributes to the broader goal of achieving sustainable and resilient agricultural systems through technological innovation.
基金supported by the National Natural Science Foundation of China(Grant No.12175316)。
文摘Kibble-Zurek scaling is the scaling of the density of topological defects formed via the Kibble-Zurek mechanism with respect to the rate at which a system is cooled across a continuous phase transition.Recently,the density of the topological defects formed via the Kibble-Zurek mechanism was estimated for a system cooled through a first-order phase transition rather than conventional continuous transitions.Here we address the problem of whether such defects generated across a first-order phase transition exhibit Kibble-Zurek scaling similar to the case in continuous phase transitions.We show that any possible Kibble-Zurek scaling for the topological defects can only be a very rough approximation due to an intrinsic field responsible for the scaling.However,complete universal scaling for other properties does exist.
基金co-supported by the National Natural Science Foundation of China (No. 12172175)the National Science and Technology Major Project, China (No. J2019-II0014-0035)the Science Center for Gas Turbine Project, China (Nos. P2022-C-II-002-001, P2022-A-II-002-001)
文摘Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.
基金supported by the National Natural Science Foundation of China(No.10874174)。
文摘We propose the scaling rule of Morse oscillator,based on this rule and by virtue of the Her-mann-Feymann theorem,we respectively obtain the distribution of potential and kinetic ener-gy of the Morse Hamiltonian.Also,we derive the exact upper limit of physical energy level.Further,we derive some recursive relations for energy matrix elements of the potential and other similar operators in the context of Morse oscillator theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104109,12222515,and 12075324)the Science and Technology Projects in Guangzhou(Grant No.2024A04J2092)the Science and Technology Projects in Guangdong Province(Grant No.211193863020).
文摘Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.
基金supported by scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)Coordenaao de Aperfeicoamento de Pessoal de Nível Superior(CAPES),Brazil(to TCM and DR)+2 种基金supported by the Kungl Vetenskapssamh Scholarship(Royal Society of Arts and Scientists)provided by Uppsala University,Sweden(to TCM)supported by the Swedish Research Council and the Swedish Brain Research Foundation(to HBS)。
文摘Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity.This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders.One of the most studied homeostatic processes is synaptic scaling,where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors,neurotransmitters,and morphology.However,despite the comprehensive literature on the electrophysiological properties of homeostatic scaling,less is known about the structural adjustments that occur in the synapses and dendritic tree.In this study,we performed a meta-analysis of articles investigating the effects of chronic network excitation(synaptic downscaling)or inhibition(synaptic upscaling)on the dendritic spine density of neurons.Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling,independent of the intervention type.Then,we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.