Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distin...Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distinguished by their high output complexity and expansive response space,offer a promising alternative to conventional electronic counterparts.For practical authentications,the expansion of optical PUF keys usually involves intricate spatial or spectral shaping of excitation light using bulky external apparatus,which largely hinders the applications of optical PUFs.Here,we report a plasmonic PUF system based on heterogeneous nanostructures.The template-assisted shadow deposition technique was employed to adjust the morphological diversity of densely packed metal nanoparticles in individual PUFs.Transmission images were processed via a hash algorithm,and the generated PUF keys with a scalable capacity from 2875 to 243401 exhibit excellent uniqueness,randomness,and reproducibility.Furthermore,the wavelength and the polarization state of the excitation light are harnessed as two distinct expanding strategies,offering the potential for multiscenario applications via a single PUF.Overall,our reported plasmonic PUFs operated with the multidimensional expanding strategy are envisaged to serve as easy-to-integrate,easy-to-use systems and promise efficacy across a broad spectrum of applications,from anticounterfeiting to data encryption and authentication.展开更多
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans...Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).展开更多
The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resour...The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resource limitations and diverse system architectures.The current conventional intrusion detection systems(IDS)face scalability problems and trust-related issues,but blockchain-based solutions face limitations because of their low transaction throughput(Bitcoin:7 TPS(Transactions Per Second),Ethereum:15-30 TPS)and high latency.The research introduces MBID(Multi-Tier Blockchain Intrusion Detection)as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection,which solves the problems in huge IoT networks.The MBID system uses a four-tier architecture that includes device,edge,fog,and cloud layers with blockchain implementations and Physics-Informed Neural Networks(PINNs)for edge-based anomaly detection and a dual consensus mechanism that uses Honesty-based Distributed Proof-of-Authority(HDPoA)and Delegated Proof of Stake(DPoS).The system achieves scalability and efficiency through the combination of dynamic sharding and Interplanetary File System(IPFS)integration.Experimental evaluations demonstrate exceptional performance,achieving a detection accuracy of 99.84%,an ultra-low false positive rate of 0.01% with a False Negative Rate of 0.15%,and a near-instantaneous edge detection latency of 0.40 ms.The system demonstrated an aggregate throughput of 214.57 TPS in a 3-shard configuration,providing a clear,evidence-based path for horizontally scaling to support overmillions of devices with exceeding throughput.The proposed architecture represents a significant advancement in blockchain-based security for IoT networks,effectively balancing the trade-offs between scalability,security,and decentralization.展开更多
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a...The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.展开更多
The number of students demanding computer science(CS)education is rapidly rising,and while faculty sizes are also growing,the traditional pipeline consisting of a CS major,a CS master’s,and then a move to industry or...The number of students demanding computer science(CS)education is rapidly rising,and while faculty sizes are also growing,the traditional pipeline consisting of a CS major,a CS master’s,and then a move to industry or a Ph.D.program is simply not scalable.To address this problem,the Department of Computing at the University of Illinois has introduced a multidisciplinary approach to computing,which is a scalable and collaborative approach to capitalize on the tremendous demand for computer science education.The key component of the approach is the blended major,also referred to as“CS+X”,where CS denotes computer science and X denotes a non-computing field.These CS+X blended degrees enable win-win partnerships among multiple subject areas,distributing the educational responsibilities while growing the entire university.To meet the demand from non-CS majors,another pathway that is offered is a graduate certificate program in addition to the traditional minor program.To accommodate the large number of students,scalable teaching tools,such as automatic graders,have also been developed.展开更多
A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channe...A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.展开更多
Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the ...Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the logical link, which is simple and effective innetwork with additive and constrained concave parameters. We extend the method to network associatedwith multi-parameters. Furthermore, we propose a modified star aggregation algorithm. Simulationsare used to evaluate the performance. The results show that our algorithm is relatively good.展开更多
This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed...This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed router immediately after a global route is extracted. With the interleaving mode of global routing immediately followed by detailed routing, accurate routing resource and congestion information can be obtained, which provides valuable guidance for the following global routing process. The framework features the fast pattern and framed shortest path global router,a maze-based congestion-driven detailed router, and better interaction between the two routers. In the framework, timing critical nets can be assigned higher priority for performance concern, and different net ordering techniques can be adopted for different routing objectives. The framework is tested on a set of commonly used benchmark circuits and compared with a previous multilevel routing framework. Experimental results show that the presented framework obtains significantly better routing solutions than the previous one considering circuit performance, routing completion rate, and runtime.展开更多
The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design ...The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.展开更多
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ...The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.展开更多
Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping ob...Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.展开更多
Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,th...Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.展开更多
Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of pr...Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of practical applications,scalable fabrication of SPhCs with large-area uniformity and precisegeometrical controllability has been considered as one prerequisitebut still remains a challenge.展开更多
In this work, a new method to deal with the unconnected pixels in motion compensated temporal filtering (MCTF) is presented, which is designed to improve the performance of 3D lifted wavelet coding. Furthermore, multi...In this work, a new method to deal with the unconnected pixels in motion compensated temporal filtering (MCTF) is presented, which is designed to improve the performance of 3D lifted wavelet coding. Furthermore, multiple description scalable coding (MDSC) is investigated, and novel MDSC schemes based on 3D wavelet coding are proposed, using the lifting imple- mentation of temporal filtering. The proposed MDSC schemes can avoid the mismatch problem in multiple description video coding, and have high scalability and robustness of video transmission. Experimental results showed that the proposed schemes are feasible and adequately effective.展开更多
Colloidal solution combustion synthesis(CSCS)is a simple and easy method for mass-production of crystalline nanomaterials with tunable pore structure.In this work,mesoporous Mn/CeO_(2) catalysts were fabricated via CS...Colloidal solution combustion synthesis(CSCS)is a simple and easy method for mass-production of crystalline nanomaterials with tunable pore structure.In this work,mesoporous Mn/CeO_(2) catalysts were fabricated via CSCS method coupled with a dip-coating process and used for photocatalytic oxidation(PCO)of toluene.Under vacuum ultraviolet(VUV)irradiation,a high toluene removal efficiency of about 92%was achieved with a toluene reaction rate of about 118μmol/g/h in a continuous flow reactor.A possible degradation pathway was proposed based on the analysis of intermediates by Fourier transform infrared photoluminescence spectra(FTIR)and GC-Mass.Hydrogen temperature-programmed reduction(H_(2)-TPR),Brunauer-Emmett-Teller(BET)surface areas,photoluminescence spectra(PL)spectra and X-ray photoelectron spectroscopy(XPS)were carried out to analyze physical and chemical properties of the catalysts.Compared with Mn_(x)Ce_(1-x)O_(2) catalysts synthesized by one step CSCS method,Mn/CeO_(2) has a higher photocatalytic activity,which is attributed to the presence of higher contents of Ce^(3+),Mn^(2+)and Mn^(3+)species.The presence of higher contents of these species plays a key role in the activity enhancement of toluene oxidation and ozone decomposition.This method is facile,efficient and scalable,and it may become a promising industrial application technology for catalyst synthesis in the near future.展开更多
Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin...Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin-film processing technologies like spin-coating method.However,such approaches may not be upscaled for large-area substrates.Thus,strategies and materials need to be developed for manufacturing processing routes to realize future commercial photovoltaic fabrications.Notable results have been achieved on large-area perovskite solar cells.In this review,similarities and differences of large-area perovskite fabrication mechanisms between the various pathways are investigated,especially on the parameters affecting the nucleation and crystal growth kinetics.Moreover,the methods for large-area transporting layers and electrodes are discussed,and some key issues from cells to modules.Challenges and opportunities are proposed to pave the way of high-efficiency perovskite solar modules.展开更多
Two-dimensional van der Waals heterostructures are mostly created by an arduous micromechanical exfoliation and manual restacking process.In a recent report published in Nature,Li and colleagues reported a chemical va...Two-dimensional van der Waals heterostructures are mostly created by an arduous micromechanical exfoliation and manual restacking process.In a recent report published in Nature,Li and colleagues reported a chemical vapour deposition(CVD)method with controllable nucleation sites for synthesizing van der Waals heterostructure arrays scalably and controllably,which is a necessary step towards practical integrated circuits.展开更多
The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,t...The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,to scale these laboratory demonstrations to PV module-scale production will require development of scalable deposition methods for perovskite thin films.Every record result for perovskite PVs so far was achieved via spin coating,a technique that is popular in research laboratories for thin-film coating over relatively small device areas,but not considered to be a method that could be used to scale up the manufacturing of perovskite PVs.Significantly larger thin-film areas are needed for future commercial PV products.Hence,some researchers have focused their efforts on perovskite deposition techniques that can be considered as scalable for mass production and have achieved notable results even on large areas.Here,we present an overview of the solution-based and vapor-based deposition processes;we explain their influence on the molecular crystal growth behavior of perovskite thin films and discuss the morphology as well as other material quality characteristics.By presenting a comprehensive comparison of the deposition techniques and the corresponding performance parameters for different device sizes,we intent to guide the growing research community through the methods that might enable mass production of perovskite solar products.展开更多
Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Und...Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.展开更多
Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET rout...Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET routing protocols: Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) when employed to forward scalable video contents. AODV and DSR are reactive protocols in that routing paths are established once needed. On the other hand, OLSR is a proactive routing protocol where routing information is exchanged and maintained continuously. The goal of the performance evaluation in this study is to assess the performance of AODV, DSR and OLSR in communicating scalable video contents. In the simulation part of this paper, a real video sequence is communicated where the characteristics and quality of the video decoded at receiver nodes are evaluated. NS2 along with extensions and other evaluation frameworks have been used to assess the performance of the MANET routing protocols when used for scalable video communication. The framework allows starting from a raw video that is encoded, packetized, transmitted through a network topology and collected at receiver to be decoded, played, and evaluated. Delay and timing constraints are taken into consideration when decoding the received video packets.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62422503,62105080,22004016,and U22A2093)the Guangdong Basic and Applied Basic Research Foundation Regional Joint Fund(Grant Nos.2023A1515011944,2020B1515130006,and 2021B515120056)+1 种基金the Talent Recruitment Project of Guangdong(Grant No.2021QN02X179)the Science and Technology Innovation Commission of Shenzhen(Grant Nos.JCYJ20220531095604009 and RCYX20221008092907027).
文摘Confronting the escalating global challenge of counterfeit products,developing advanced anticounterfeiting materials and structures with physical unclonable functions(PUFs)has become imperative.All-optical PUFs,distinguished by their high output complexity and expansive response space,offer a promising alternative to conventional electronic counterparts.For practical authentications,the expansion of optical PUF keys usually involves intricate spatial or spectral shaping of excitation light using bulky external apparatus,which largely hinders the applications of optical PUFs.Here,we report a plasmonic PUF system based on heterogeneous nanostructures.The template-assisted shadow deposition technique was employed to adjust the morphological diversity of densely packed metal nanoparticles in individual PUFs.Transmission images were processed via a hash algorithm,and the generated PUF keys with a scalable capacity from 2875 to 243401 exhibit excellent uniqueness,randomness,and reproducibility.Furthermore,the wavelength and the polarization state of the excitation light are harnessed as two distinct expanding strategies,offering the potential for multiscenario applications via a single PUF.Overall,our reported plasmonic PUFs operated with the multidimensional expanding strategy are envisaged to serve as easy-to-integrate,easy-to-use systems and promise efficacy across a broad spectrum of applications,from anticounterfeiting to data encryption and authentication.
文摘Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).
基金supported in part by Multimedia University under the Research Fellow Grant MMUI/250008in part by Telekom Research&Development Sdn Bhd underGrantRDTC/241149Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R140),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The Internet of Things(IoT)ecosystem faces growing security challenges because it is projected to have 76.88 billion devices by 2025 and $1.4 trillion market value by 2027,operating in distributed networks with resource limitations and diverse system architectures.The current conventional intrusion detection systems(IDS)face scalability problems and trust-related issues,but blockchain-based solutions face limitations because of their low transaction throughput(Bitcoin:7 TPS(Transactions Per Second),Ethereum:15-30 TPS)and high latency.The research introduces MBID(Multi-Tier Blockchain Intrusion Detection)as a groundbreaking Multi-Tier Blockchain Intrusion Detection System with AI-Enhanced Detection,which solves the problems in huge IoT networks.The MBID system uses a four-tier architecture that includes device,edge,fog,and cloud layers with blockchain implementations and Physics-Informed Neural Networks(PINNs)for edge-based anomaly detection and a dual consensus mechanism that uses Honesty-based Distributed Proof-of-Authority(HDPoA)and Delegated Proof of Stake(DPoS).The system achieves scalability and efficiency through the combination of dynamic sharding and Interplanetary File System(IPFS)integration.Experimental evaluations demonstrate exceptional performance,achieving a detection accuracy of 99.84%,an ultra-low false positive rate of 0.01% with a False Negative Rate of 0.15%,and a near-instantaneous edge detection latency of 0.40 ms.The system demonstrated an aggregate throughput of 214.57 TPS in a 3-shard configuration,providing a clear,evidence-based path for horizontally scaling to support overmillions of devices with exceeding throughput.The proposed architecture represents a significant advancement in blockchain-based security for IoT networks,effectively balancing the trade-offs between scalability,security,and decentralization.
基金the National Key R&D Program of China(2022YFA1203304)the Natural Science Foundation of Jiangsu Province(BK20220288)+1 种基金Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(Start-up grant E1552102)the China Postdoctoral Science Foundation(No.2023M732553).
文摘The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.
文摘The number of students demanding computer science(CS)education is rapidly rising,and while faculty sizes are also growing,the traditional pipeline consisting of a CS major,a CS master’s,and then a move to industry or a Ph.D.program is simply not scalable.To address this problem,the Department of Computing at the University of Illinois has introduced a multidisciplinary approach to computing,which is a scalable and collaborative approach to capitalize on the tremendous demand for computer science education.The key component of the approach is the blended major,also referred to as“CS+X”,where CS denotes computer science and X denotes a non-computing field.These CS+X blended degrees enable win-win partnerships among multiple subject areas,distributing the educational responsibilities while growing the entire university.To meet the demand from non-CS majors,another pathway that is offered is a graduate certificate program in addition to the traditional minor program.To accommodate the large number of students,scalable teaching tools,such as automatic graders,have also been developed.
文摘A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.
文摘Topology aggregation is necessary for scalable QoS routing mechanisms. Thekey issue is how to gain good performance while summarizing the topological information. In thispaper, we propose a new method to describe the logical link, which is simple and effective innetwork with additive and constrained concave parameters. We extend the method to network associatedwith multi-parameters. Furthermore, we propose a modified star aggregation algorithm. Simulationsare used to evaluate the performance. The results show that our algorithm is relatively good.
文摘This paper presents a novel full-chip scalable routing framework that simultaneously considers the routing congestion and the circuit performance. In order to bridge the gap, the presented framework calls the detailed router immediately after a global route is extracted. With the interleaving mode of global routing immediately followed by detailed routing, accurate routing resource and congestion information can be obtained, which provides valuable guidance for the following global routing process. The framework features the fast pattern and framed shortest path global router,a maze-based congestion-driven detailed router, and better interaction between the two routers. In the framework, timing critical nets can be assigned higher priority for performance concern, and different net ordering techniques can be adopted for different routing objectives. The framework is tested on a set of commonly used benchmark circuits and compared with a previous multilevel routing framework. Experimental results show that the presented framework obtains significantly better routing solutions than the previous one considering circuit performance, routing completion rate, and runtime.
文摘The scalable extension of H.264/AVC, known as scalable video coding or SVC, is currently the main focus of the Joint Video Team’s work. In its present working draft, the higher level syntax of SVC follows the design principles of H.264/AVC. Self-contained network abstraction layer units (NAL units) form natural entities for packetization. The SVC specification is by no means finalized yet, but nevertheless the work towards an optimized RTP payload format has already started. RFC 3984, the RTP payload specification for H.264/AVC has been taken as a starting point, but it became quickly clear that the scalable features of SVC require adaptation in at least the areas of capability/operation point signaling and documentation of the extended NAL unit header. This paper first gives an overview of the history of scalable video coding, and then reviews the video coding layer (VCL) and NAL of the latest SVC draft specification. Finally, it discusses different aspects of the draft SVC RTP payload format, in- cluding the design criteria, use cases, signaling and payload structure.
文摘The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.
文摘Humans can sense, weigh and grasp different objects, deduce their physical properties at the same time, and exert appropriate forces – a challenging task for modern robots. Studying the mechanics of human grasping objects will play a supplementary role in visual-based robot object processing. These tools require large-scale tactile data sets with high spatial resolution. However, there is no large human-grasped tactile data set covering the whole hand, because dense coverage of the human hand with tactile sensors is challenging. Hence, the capability of observing and learning from successful daily humanobject interactions is the long-term goal of aiding the development of robots and prosthetics.
基金financially supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800104)the National Natural Science Foundation of China(51822203,52002140,U20A20252,51861145404,62105293,62205187)+4 种基金the Young Elite Scientists Sponsorship Program by CAST,the Self-determined and Innovative Research Funds of HUST(2020KFYXJJS008)the Natural Science Foundation of Hubei Province(ZRJQ2022000408)the Shenzhen Science and Technology Innovation Committee(JCYJ20180507182257563)Fundamental Research Program of Shanxi Province(202103021223032)the Innovation Project of Optics Valley Laboratory of China(OVL2021BG008)。
文摘Over the last decade,remarkable progress has been made in metal halide perovskite solar cells(PSCs),which have been a focus of emerging photovoltaic techniques and show great potential for commercialization.However,the upscaling of small-area PSCs to large-area solar modules to meet the demands of practical applications remains a significant challenge.The scalable production of high-quality perovskite films by a simple,reproducible process is crucial for resolving this issue.Furthermore,the crystallization behavior in the solution-processed fabrication of perovskite films can be strongly influenced by the physicochemical properties of the precursor inks,which are significantly affected by the employed solvents and their interactions with the solutes.Thus,a comprehensive understanding of solvent engineering for fabricating perovskite films over large areas is urgently required.In this paper,we first analyze the role of solvents in the solution-processed fabrication of large-area perovskite films based on the classical crystal nucleation and growth mechanism.Recent efforts in solvent engineering to improve the quality of perovskite films for solar modules are discussed.Finally,the basic principles and future challenges of solvent system design for scalable fabrication of high-quality perovskite films for efficient solar modules are proposed.
文摘Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of practical applications,scalable fabrication of SPhCs with large-area uniformity and precisegeometrical controllability has been considered as one prerequisitebut still remains a challenge.
基金Project supported by the National Natural Science Foundation ofChina (No. 60472100), the Natural Science Foundation of ZhejiangProvince (Nos. RC01057, Y105577, 601017), the Ningbo Scienceand Technology Project (Nos. 2003A61001, 2004A610001,2004A630002), and the Zhejiang Science and Technology Project(No. 2004C31105), China
文摘In this work, a new method to deal with the unconnected pixels in motion compensated temporal filtering (MCTF) is presented, which is designed to improve the performance of 3D lifted wavelet coding. Furthermore, multiple description scalable coding (MDSC) is investigated, and novel MDSC schemes based on 3D wavelet coding are proposed, using the lifting imple- mentation of temporal filtering. The proposed MDSC schemes can avoid the mismatch problem in multiple description video coding, and have high scalability and robustness of video transmission. Experimental results showed that the proposed schemes are feasible and adequately effective.
基金supported by an international collaboration funding of China Petrochemical Technology Company Limited。
文摘Colloidal solution combustion synthesis(CSCS)is a simple and easy method for mass-production of crystalline nanomaterials with tunable pore structure.In this work,mesoporous Mn/CeO_(2) catalysts were fabricated via CSCS method coupled with a dip-coating process and used for photocatalytic oxidation(PCO)of toluene.Under vacuum ultraviolet(VUV)irradiation,a high toluene removal efficiency of about 92%was achieved with a toluene reaction rate of about 118μmol/g/h in a continuous flow reactor.A possible degradation pathway was proposed based on the analysis of intermediates by Fourier transform infrared photoluminescence spectra(FTIR)and GC-Mass.Hydrogen temperature-programmed reduction(H_(2)-TPR),Brunauer-Emmett-Teller(BET)surface areas,photoluminescence spectra(PL)spectra and X-ray photoelectron spectroscopy(XPS)were carried out to analyze physical and chemical properties of the catalysts.Compared with Mn_(x)Ce_(1-x)O_(2) catalysts synthesized by one step CSCS method,Mn/CeO_(2) has a higher photocatalytic activity,which is attributed to the presence of higher contents of Ce^(3+),Mn^(2+)and Mn^(3+)species.The presence of higher contents of these species plays a key role in the activity enhancement of toluene oxidation and ozone decomposition.This method is facile,efficient and scalable,and it may become a promising industrial application technology for catalyst synthesis in the near future.
基金supported by the National Key Research and Development Program of China(Nos.2019YFA0707003 and 2019YFE0114100)the National Natural Science Foundation of China(NSFC 51872007)Beijing Municipal Natural Science Foundation(No.7202094).
文摘Perovskite solar cells have reached a power-conversion efficiency(PCE) of 25.6%,showing great potential with reliable moisture and heat stability.Most results are achieved on small-area devices,using conventional thin-film processing technologies like spin-coating method.However,such approaches may not be upscaled for large-area substrates.Thus,strategies and materials need to be developed for manufacturing processing routes to realize future commercial photovoltaic fabrications.Notable results have been achieved on large-area perovskite solar cells.In this review,similarities and differences of large-area perovskite fabrication mechanisms between the various pathways are investigated,especially on the parameters affecting the nucleation and crystal growth kinetics.Moreover,the methods for large-area transporting layers and electrodes are discussed,and some key issues from cells to modules.Challenges and opportunities are proposed to pave the way of high-efficiency perovskite solar modules.
文摘Two-dimensional van der Waals heterostructures are mostly created by an arduous micromechanical exfoliation and manual restacking process.In a recent report published in Nature,Li and colleagues reported a chemical vapour deposition(CVD)method with controllable nucleation sites for synthesizing van der Waals heterostructure arrays scalably and controllably,which is a necessary step towards practical integrated circuits.
基金funded by the MIT-Tata Grid Edge Solar research program
文摘The recent steady improvements in the performance of the nascent hybrid perovskite photovoltaic(PV)devices have led to power conversion efficiencies that rival the best-performing established PV technologies.However,to scale these laboratory demonstrations to PV module-scale production will require development of scalable deposition methods for perovskite thin films.Every record result for perovskite PVs so far was achieved via spin coating,a technique that is popular in research laboratories for thin-film coating over relatively small device areas,but not considered to be a method that could be used to scale up the manufacturing of perovskite PVs.Significantly larger thin-film areas are needed for future commercial PV products.Hence,some researchers have focused their efforts on perovskite deposition techniques that can be considered as scalable for mass production and have achieved notable results even on large areas.Here,we present an overview of the solution-based and vapor-based deposition processes;we explain their influence on the molecular crystal growth behavior of perovskite thin films and discuss the morphology as well as other material quality characteristics.By presenting a comprehensive comparison of the deposition techniques and the corresponding performance parameters for different device sizes,we intent to guide the growing research community through the methods that might enable mass production of perovskite solar products.
基金supported by the National Natural Science Foundation of China under Grant No.61801119。
文摘Scalable video coding(SVC)has been widely used in video-on-demand(VOD)service,to efficiently satisfy users’different video quality requirements and dynamically adjust video stream to timevariant wireless channels.Under the 5G network structure,we consider a cooperative caching scheme inside each cluster with SVC to economically utilize the limited caching storage.A novel multi-agent deep reinforcement learning(MADRL)framework is proposed to jointly optimize the video access delay and users’satisfaction,where an aggregation node is introduced helping individual agents to achieve global observations and overall system rewards.Moreover,to cope with the large action space caused by the large number of videos and users,a dimension decomposition method is embedded into the neural network in each agent,which greatly reduce the computational complexity and memory cost of the reinforcement learning.Experimental results show that:1)the proposed value-decomposed dimensional network(VDDN)algorithm achieves an obvious performance gain versus the traditional MADRL;2)the proposed VDDN algorithm can handle an extremely large action space and quickly converge with a low computational complexity.
文摘Mobile Ad-hoc Networks (MANETs) operate without infrastructure where nodes can move randomly. Therefore, routing in MANETs is a challenging task. In this paper we evaluate the performance of three important MANET routing protocols: Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Optimized Link State Routing (OLSR) when employed to forward scalable video contents. AODV and DSR are reactive protocols in that routing paths are established once needed. On the other hand, OLSR is a proactive routing protocol where routing information is exchanged and maintained continuously. The goal of the performance evaluation in this study is to assess the performance of AODV, DSR and OLSR in communicating scalable video contents. In the simulation part of this paper, a real video sequence is communicated where the characteristics and quality of the video decoded at receiver nodes are evaluated. NS2 along with extensions and other evaluation frameworks have been used to assess the performance of the MANET routing protocols when used for scalable video communication. The framework allows starting from a raw video that is encoded, packetized, transmitted through a network topology and collected at receiver to be decoded, played, and evaluated. Delay and timing constraints are taken into consideration when decoding the received video packets.