Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu...Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.展开更多
Tianjin is one of the inland cities with the most severe cases of subsidence hazard in China.The majority of the existing studies have mainly focused on Beijing-Tianjin-Hebei,and little attention has been given to Tia...Tianjin is one of the inland cities with the most severe cases of subsidence hazard in China.The majority of the existing studies have mainly focused on Beijing-Tianjin-Hebei,and little attention has been given to Tianjin.In addition,these existing studies are short-term investigations,lacking long-term monitoring of surface subsidence.In the present study,we use the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-InSAR)technique to monitor the subsidence process in Tianjin between 2015 and 2020 and reveal its spatial and temporal variation.We divided the 44-view Sentinel-1A image data into three periods to avoid the effect of temporal and spatial decoherence by extracting the surface deformation field in Tianjin.We finally verified the accuracy and reliability of the inversion results using second-order leveling data.Results showed that the correlation coefficient r between the two reached 0.89,and the root mean square error was 4.84 mm/y.Obvious subsidence funnels exist in Tianjin,mainly in the towns of Wangqingtuo and Shengfang.These subsidence funnels have a subsidence deformation rate of-136.2 mm/y and a maximum cumulative settlement of-346.3 mm within the study period.The subsidence area tends to extend to the southwest.The analysis of annual rainfall,groundwater resource extraction,spatial location distribution of industrial areas combined with SBAS-InSAR inversion results indicates that overextraction of groundwater resources is the main cause of land subsidence in the area.Therefore,strict control of groundwater extraction is the main approach to mitigate land subsidence effectively.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error,time-space decorrelation,atmospheric error,thereby improving the reliability of surface-deformation monito...SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error,time-space decorrelation,atmospheric error,thereby improving the reliability of surface-deformation monitoring.This paper studies the early landslide identification method based on SBAS-InSAR technology.Selecting the Jiangdingya landslide area in Zhouqu County,Gansu Province as the research area,84 ascendingorbit Sentinel-1A SAR images from 2015 to 2019 are collected.In addition,using SBAS-InSAR technology,the rate and time-series results of surface deformation of the landslide area in Jiangdingya during this period are extracted,and potential landslides are identified.The results show that the early landslide identification method based on SBAS-InSAR technology is highly feasible and is a better tool for identifying potential landslides in large areas.展开更多
In order to explore the applicability of SBAS-InSAR technology to the deformation monitoring in coastal reclamation areas,this paper,based on 28 Sentinel-1A images,uses SBAS-InSAR technology to obtain the surface defo...In order to explore the applicability of SBAS-InSAR technology to the deformation monitoring in coastal reclamation areas,this paper,based on 28 Sentinel-1A images,uses SBAS-InSAR technology to obtain the surface deformation information of the Tianjin Port reclamation area from January 2018 to November 2019,which reveals the characteristics of surface deformation in the land reclamation area of Tianjin Port and analyzes the relationship between the subsidence rate and reclamation time and land use type.The results show that the land reclamation area of Tianjin Port has the characteristics of a wide range of subsidence rate,uneven settlement and multiple settlement funnels.The subsidence rate ranges from-74.9 to19.7mm/a and it is inversely proportional to the land reclamation time.The subsidence rate of the early reclamation area is smaller,while that of the newly reclamation area is higher.The subsidence rate varies greatly among different land use types.This study verifies the feasibility of SBAS-InSAR Technology in the deformation monitoring of reclamation areas,and provides ideas for the monitoring and analysis of land subsidence in coastal areas such as coastal zones,islands and tidal flat.展开更多
The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them w...The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.展开更多
Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide ...Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide technology for good and prevent and control technological risks has become an important issue of global concern.Research on science and technology ethics is dedicated to integrating ethical theories into governance practices and constructing ethical models that adapt to the development of the times.Methods:This article systematically reviews the six core approaches of scientific and technological ethics thought,including technological autonomy and political philosophy criticism,responsibility ethics and intergenerational obligations,technological intermediation and the integration of life and the world,ethical principles and normative frameworks,participatory governance and ethical practice innovation,as well as domain-specific ethical norms,thereby constructing an ethical analysis framework applicable to medical technology risks.And cross-analysis was conducted by taking medical events such as gene editing and xenotransplantation as examples.Results:Research shows that a single ethical approach has limitations in addressing complex medical ethical challenges,while the six approaches are complementary and synergistic.By criticizing technological autonomy,establishing a responsibility ethics orientation,setting the bottom line of ethical principles,promoting participatory governance,formulating domain norms,and continuously reflecting on the intermediary nature of technology,a multi-level and dynamically adaptive governance system for scientific and technological ethics can be constructed.Conclusion:The key to addressing contemporary medical ethics challenges lies in the comprehensive application of science and technology ethics theories and the integration of ethical considerations throughout the entire process of scientific and technological research and development.In the future,a governance framework that adapts to the development of new technologies should be established to promote cross-cultural and cross-disciplinary ethical dialogue and public participation,ensuring that scientific and technological innovation always serves the dignity of human life and overall well-being.展开更多
The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning ...The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and...As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.展开更多
As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of...As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.展开更多
This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement ...This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.展开更多
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa...When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.展开更多
Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu...In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions....This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.41861134008)Muhammad Asif Khan academician workstation of Yunnan Province(Grant No.202105AF150076)+6 种基金General program of Yunnan Province Science and Technology Department(Grant No.202105AF150076)Key Project of Natural Science Foundation of Yunnan Province(Grant No.202101AS070019)Key R&D Program of Yunnan Province(Grant No.202003AC100002)General Program of basic research plan of Yunnan Province(Grant No.202001AT070059)Major scientific and technological projects of Yunnan Province:Research on Key Technologies of ecological environment monitoring and intelligent management of natural resources in Yunnan(No:202202AD080010)“Study on High-Level Hidden Landslide Identification Based on Multi-Source Data”of Key Laboratory of Early Rapid Identification,Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province(KLGDTC-2021-02)Guizhou Scientific and Technology Fund(QKHJ-ZK[2023]YB 193).
文摘Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions.
基金Natural Science Foundation of Guangxi(Nos.2018GXNSFBA050006,2020GXNSFBA159033)Wuhan Science and Technology Plan Project(No.2019010702011314)+2 种基金Guangxi Science and Technology Plan Project(No.GUIKE AD19110107)National Natural Science Foundation of China(Nos.42064003,42064002)Guangxi Universities Young and Middle-aged Teachers’Basic Scientific Research Ability Improvement Project(No.2020KY0603)。
文摘Tianjin is one of the inland cities with the most severe cases of subsidence hazard in China.The majority of the existing studies have mainly focused on Beijing-Tianjin-Hebei,and little attention has been given to Tianjin.In addition,these existing studies are short-term investigations,lacking long-term monitoring of surface subsidence.In the present study,we use the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-InSAR)technique to monitor the subsidence process in Tianjin between 2015 and 2020 and reveal its spatial and temporal variation.We divided the 44-view Sentinel-1A image data into three periods to avoid the effect of temporal and spatial decoherence by extracting the surface deformation field in Tianjin.We finally verified the accuracy and reliability of the inversion results using second-order leveling data.Results showed that the correlation coefficient r between the two reached 0.89,and the root mean square error was 4.84 mm/y.Obvious subsidence funnels exist in Tianjin,mainly in the towns of Wangqingtuo and Shengfang.These subsidence funnels have a subsidence deformation rate of-136.2 mm/y and a maximum cumulative settlement of-346.3 mm within the study period.The subsidence area tends to extend to the southwest.The analysis of annual rainfall,groundwater resource extraction,spatial location distribution of industrial areas combined with SBAS-InSAR inversion results indicates that overextraction of groundwater resources is the main cause of land subsidence in the area.Therefore,strict control of groundwater extraction is the main approach to mitigate land subsidence effectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金Received on May 7th,2020revised on September 27th,2020.This project is sponsored by the Research on Early Identification of Landslide Hazards based on High-resolution SAR Image(KJ-2018-13).
文摘SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error,time-space decorrelation,atmospheric error,thereby improving the reliability of surface-deformation monitoring.This paper studies the early landslide identification method based on SBAS-InSAR technology.Selecting the Jiangdingya landslide area in Zhouqu County,Gansu Province as the research area,84 ascendingorbit Sentinel-1A SAR images from 2015 to 2019 are collected.In addition,using SBAS-InSAR technology,the rate and time-series results of surface deformation of the landslide area in Jiangdingya during this period are extracted,and potential landslides are identified.The results show that the early landslide identification method based on SBAS-InSAR technology is highly feasible and is a better tool for identifying potential landslides in large areas.
文摘In order to explore the applicability of SBAS-InSAR technology to the deformation monitoring in coastal reclamation areas,this paper,based on 28 Sentinel-1A images,uses SBAS-InSAR technology to obtain the surface deformation information of the Tianjin Port reclamation area from January 2018 to November 2019,which reveals the characteristics of surface deformation in the land reclamation area of Tianjin Port and analyzes the relationship between the subsidence rate and reclamation time and land use type.The results show that the land reclamation area of Tianjin Port has the characteristics of a wide range of subsidence rate,uneven settlement and multiple settlement funnels.The subsidence rate ranges from-74.9 to19.7mm/a and it is inversely proportional to the land reclamation time.The subsidence rate of the early reclamation area is smaller,while that of the newly reclamation area is higher.The subsidence rate varies greatly among different land use types.This study verifies the feasibility of SBAS-InSAR Technology in the deformation monitoring of reclamation areas,and provides ideas for the monitoring and analysis of land subsidence in coastal areas such as coastal zones,islands and tidal flat.
文摘The moment a media delegation from the Republic of the Congo arrived at the Othello Kitchenware Museum on 18 November 2025,they were greeted with a vivid show of Guangdong’s industrial strength.Standing before them was not a typical exhibition hall,but a building shaped like a gleaming stainless-steel cooking pot.
基金supported by the National Key Research and Development Program(Grant No.2024YFA0917200)the Projects of the Chinese Center for Disease Control and Prevention(Grant No.BB2110240093)World Medical History under the Education Innovation Plan of the University of Science and Technology of China(Grant No.2024YCHX07).
文摘Background:With the rapid development of modern emerging technologies,the ethical dilemmas and social controversies triggered by scientific and technological activities have become increasingly prominent.How to guide technology for good and prevent and control technological risks has become an important issue of global concern.Research on science and technology ethics is dedicated to integrating ethical theories into governance practices and constructing ethical models that adapt to the development of the times.Methods:This article systematically reviews the six core approaches of scientific and technological ethics thought,including technological autonomy and political philosophy criticism,responsibility ethics and intergenerational obligations,technological intermediation and the integration of life and the world,ethical principles and normative frameworks,participatory governance and ethical practice innovation,as well as domain-specific ethical norms,thereby constructing an ethical analysis framework applicable to medical technology risks.And cross-analysis was conducted by taking medical events such as gene editing and xenotransplantation as examples.Results:Research shows that a single ethical approach has limitations in addressing complex medical ethical challenges,while the six approaches are complementary and synergistic.By criticizing technological autonomy,establishing a responsibility ethics orientation,setting the bottom line of ethical principles,promoting participatory governance,formulating domain norms,and continuously reflecting on the intermediary nature of technology,a multi-level and dynamically adaptive governance system for scientific and technological ethics can be constructed.Conclusion:The key to addressing contemporary medical ethics challenges lies in the comprehensive application of science and technology ethics theories and the integration of ethical considerations throughout the entire process of scientific and technological research and development.In the future,a governance framework that adapts to the development of new technologies should be established to promote cross-cultural and cross-disciplinary ethical dialogue and public participation,ensuring that scientific and technological innovation always serves the dignity of human life and overall well-being.
基金funded by the Project from the Maqu Branch of Gannan Tibetan Autonomous Prefecture Ecological Environment Bureau,China(No.33412021021)。
文摘The Small Baseline Subset InSAR(SBAS-InSAR)and unmanned aerial vehicles(UAVs)as common ocean-land technologies,have been extensively applied in subsidence,glacial movement,surface deformation,and maritime positioning and navigation.A novel method integrating SBAS-InSAR and UAV photogrammetry is used to analyze ground subsidence deformation in the Gesar gold mine located in Maqu,Northwest China.This approach uses SBAS-InSAR to calculate two-dimensional deformation data for capturing ascending and descending measurements.This method can provide precise information on small-sized deformations within mining regions.The deformation data obtained from UAVs and the vertical deformation data derived from InSAR are integrated to generate comprehensive and accurate ground subsidence data from the mining district.Results demonstrate that using a combined InSAR(vertical)and UAV technique to analyze surface subsidence in mining districts resolves inconsistency between the line-of-sight and deformation orientations.Furthermore,the incoherence issue of InSAR in regions with large deformation gradients is addressed,while the inherent errors of UAV monitoring of mining surface subsidence are mitigated.The genetic algorithm(GA)-backpropagation(BP)neural network algorithm is combined with InSAR data to predict subsidence in collapsed areas.As observed,the GA-BP algorithm has the smallest residual under the same training samples.Therefore,the GA-BP neural network model can effectively predict surface subsidence in mining areas and can be used for subsequent subsidence prediction.
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
基金supported by the National Key R&D Program of China(2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and 2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘As artificial intelligence(AI)technology has continued to develop,its efficient data processing and pattern recognition capabilities have significantly improved the precision and speed of decision-making processes,and it has been widely applied across various fields.In the field of astronomy,AI techniques have demonstrated unique advantages,particularly in the identification of pulsars and their candidates.AI is able to address the challenges of pulsar celestial body identification and classification because of its accuracy and efficiency.This paper systematically surveys commonly used AI models for pulsar candidate identification,analyzing and discussing the typical applications of machine learning,artificial neural networks,convolutional neural networks,and generative adversarial networks in candidate identification.Furthermore,it explores how th.e introduction of AI techniques not only enhances the efficiency and accuracy of pulsar identification but also provides new perspectives and tools for pulsar survey data processing,thus playing a significant role in advancing pulsar research and the field of astronomy.
文摘As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.
基金the National Natural Science Foundation of China(Grant No.:71771061).
文摘This study investigated the application and the application value of intelligent emergency in emergency management in the big data environment.It addresses the neglect of the application value(performance)measurement of intelligent emergency,further improving the effectiveness of intelligent emergency management.First,approximately 3,900 documents from the intelligent emergency field are analyzed to determine the future research trend in intelligent emergency management.The socio-technical theory concerning technical and social systems is introduced.The emergency management system concepts of“technology enabling”and“enabling value creation”are defined according to bibliometric analysis and socio-technical theory.Second,a research framework that includes technology enabling and enabling value creation for the decision-making paradigm in emergency management according to the big data environment is constructed.A detailed analysis approach from intelligent emergency technology enabling to enabling value creation in emergency management is proposed.Finally,earthquake disasters are taken as examples,and specific analyses of the intelligent emergency enabling and enabling value creation are explored;enabling value creation is discussed based on measurable indicators.The clear concept of emergency management system technology enabling and enabling value creation,as well as the detailed analysis approach from intelligent emergency technology enabling to enabling value creation,provide a theoretical bases for scholars and practitioners to evaluate the value(performance)of intelligent emergency for the first time.
基金Science and Technology Major Project of Xinjiang Uygur Autonomous Region(2020A03003-7)Fundamental Research on Natural Science Program of Shaanxi Province(2021JM-180)+2 种基金Fundamental Research Funds for the Central Universities,CHD(Project for Leading Talents)(300102211302)Tianshan Cedar Plan of Science and Technology Department of Xinjiang Uygur Autonomous Region(2017XS13)Shaanxi Province Young Talent Lifting Program(CLGC202219).
文摘When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
文摘In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
基金supported by the National Key Research and Development Program of China(2022YFB3504501)the National Natural Science Foundation of China(52274355)。
文摘This paper focuses on the preparation of rare earth oxide products from rare earth chloride solutions during the rare earth extraction and separation processes,as well as the recycling of magnesium chloride solutions.It proposes the idea of introducing spray pyrolysis technology into the rare earth extraction and separation processes.This paper briefly describes the development history of chloride spray pyrolysis technology,focusing on the research status and application progress of rare earth chloride solution and magnesium chloride solution spray pyrolysis technology,as well as spray pyrolysis equipment.The paper also analyzes the challenges and technical intricacies associated with applying spray pyrolysis technology to chloride solutions in the rare earth extraction and separation processes.Additionally,it explores future trends and proposes strategies to facilitate the full recycling of acids and bases,streamline the process flow,and enhance the prospects for green and low-carbon rare earth metallurgy.