期刊文献+
共找到388篇文章
< 1 2 20 >
每页显示 20 50 100
Simulated annealing algorithm for detecting graph isomorphism 被引量:4
1
作者 Geng Xiutang Zhang Kai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1047-1052,共6页
Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annea... Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability. 展开更多
关键词 graph isomorphism problem simulated annealing algorithm nondeterministic polynomial problem local search.
在线阅读 下载PDF
A Personified Annealing Algorithm for Circles Packing Problem 被引量:5
2
作者 ZHANGDe-Fu LIXin 《自动化学报》 EI CSCD 北大核心 2005年第4期590-595,共6页
Circles packing problem is an NP-hard problem and is di?cult to solve. In this paper, ahybrid search strategy for circles packing problem is discussed. A way of generating new configurationis presented by simulating t... Circles packing problem is an NP-hard problem and is di?cult to solve. In this paper, ahybrid search strategy for circles packing problem is discussed. A way of generating new configurationis presented by simulating the moving of elastic objects, which can avoid the blindness of simulatedannealing search and make iteration process converge fast. Inspired by the life experiences of people,an e?ective personified strategy to jump out of local minima is given. Based on the simulatedannealing idea and personification strategy, an e?ective personified annealing algorithm for circlespacking problem is developed. Numerical experiments on benchmark problem instances show thatthe proposed algorithm outperforms the best algorithm in the literature. 展开更多
关键词 包装问题 模拟技术 退火算法 弹性物体
在线阅读 下载PDF
Annealing Harmony Search Algorithm to Solve the Nurse Rostering Problem
3
作者 Mohammed Hadwan 《Computers, Materials & Continua》 SCIE EI 2022年第6期5545-5559,共15页
A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints i... A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints in distributing workload equally between available nurses is still a difficult task to achieve.The international shortage of nurses,in addition to the spread of COVID-19,has made it more difficult to provide convenient rosters for nurses.Based on the literature,heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity,especially for large rosters.Heuristic-based algorithms in general have problems striking the balance between diversification and intensification.Therefore,this paper aims to introduce a novel metaheuristic hybridization that combines the enhanced harmony search algorithm(EHSA)with the simulated annealing(SA)algorithm called the annealing harmony search algorithm(AHSA).The AHSA is used to solve NRP from a Malaysian hospital.The AHSA performance is compared to the EHSA,climbing harmony search algorithm(CHSA),deluge harmony search algorithm(DHSA),and harmony annealing search algorithm(HAS).The results show that the AHSA performs better than the other compared algorithms for all the tested instances where the best ever results reported for the UKMMC dataset. 展开更多
关键词 Harmony search algorithm simulated annealing combinatorial optimization problems TIMETABLING metaheuristic algorithms nurse rostering problems
在线阅读 下载PDF
SIMULATED ANNEALING BASED POLYNOMIAL TIME QOS ROUTING ALGORITHM FOR MANETS
4
作者 Liu Lianggui Feng Guangzeng 《Journal of Electronics(China)》 2006年第5期691-697,共7页
Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Anneal... Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The pa- per outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time. 展开更多
关键词 Energy function Multi-constrained Quality-of-Service (QoS) routing Nondeterministic polynomial time complete problem Polynomial time algorithm simulated annealing
在线阅读 下载PDF
Clonal Selection Based Memetic Algorithm for Job Shop Scheduling Problems 被引量:4
5
作者 Jin-hui Yang Liang Sun +2 位作者 Heow Pueh Lee Yun Qian Yan-chun Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第2期111-119,共9页
A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exp... A clonal selection based memetic algorithm is proposed for solving job shop scheduling problems in this paper. In the proposed algorithm, the clonal selection and the local search mechanism are designed to enhance exploration and exploitation. In the clonal selection mechanism, clonal selection, hypermutation and receptor edit theories are presented to construct an evolutionary searching mechanism which is used for exploration. In the local search mechanism, a simulated annealing local search algorithm based on Nowicki and Smutnicki's neighborhood is presented to exploit local optima. The proposed algorithm is examined using some well-known benchmark problems. Numerical results validate the effectiveness of the proposed algorithm. 展开更多
关键词 job shop scheduling problem clonal selection algorithm simulated annealing global search local search
在线阅读 下载PDF
An Effective Hybrid Optimization Algorithm for Capacitated Vehicle Routing Problem
6
作者 陈爱玲 杨根科 吴智铭 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期50-55,共6页
Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high ... Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem. 展开更多
关键词 capacitated vehicle routing problem artificial immune clonal algorithm simulated annealing
在线阅读 下载PDF
Enhanced Heap-Based Optimizer Algorithm for Solving Team Formation Problem
7
作者 Nashwa Nageh Ahmed Elshamy +2 位作者 Abdel Wahab Said Hassan Mostafa Sami Mustafa Abdul Salam 《Computers, Materials & Continua》 SCIE EI 2022年第12期5245-5268,共24页
Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r... Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum. 展开更多
关键词 Team formation problem optimization problem genetic algorithm heap-based optimizer simulated annealing hybridization method chaotic local search
在线阅读 下载PDF
Evolutionary Algorithms for Solving Unconstrained Multilevel Lot-Sizing Problem with Series Structure
8
作者 韩毅 蔡建湖 +3 位作者 IKOU Kaku 李延来 陈以增 唐加福 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第1期39-44,共6页
This paper presents a comparative study of evolutionary algorithms which are considered to be effective in solving the multilevel lot-sizing problem in material requirement planning(MRP)systems.Three evolutionary algo... This paper presents a comparative study of evolutionary algorithms which are considered to be effective in solving the multilevel lot-sizing problem in material requirement planning(MRP)systems.Three evolutionary algorithms(simulated annealing(SA),particle swarm optimization(PSO)and genetic algorithm(GA))are provided.For evaluating the performances of algorithms,the distribution of total cost(objective function)and the average computational time are compared.As a result,both GA and PSO have better cost performances with lower average total costs and smaller standard deviations.When the scale of the multilevel lot-sizing problem becomes larger,PSO is of a shorter computational time. 展开更多
关键词 simulated annealing(SA) genetic algorithm(GA) particle SWARM optimization(PSO) MULTILEVEL LOT-SIZING problem
原文传递
Integrated optimal method for cell formation and layout problems based on hybrid SA algorithm with fuzzy simulation
9
作者 周炳海 Lu Yubin 《High Technology Letters》 EI CAS 2017年第1期1-6,共6页
To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described for... To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,a chance constraint was introduced. A mathematical model was established with an objective function of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this problem could not be converted into its crisp equivalent,a hybrid simulated annealing(HSA) based on fuzzy simulation was put forward. Finally,simulation experiments were conducted under different confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective. 展开更多
关键词 fuzzy demand cell formation and cell layout problem chance constraint fuzzysimulation simulated annealing algorithm
在线阅读 下载PDF
On the “Onion Husk” Algorithm for Approximate Solution of the Traveling Salesman Problem
10
作者 Mikhail E. Abramyan Nikolai I. Krainiukov Boris F. Melnikov 《Journal of Applied Mathematics and Physics》 2024年第4期1557-1570,共14页
The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) ... The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. . 展开更多
关键词 Branch and Bound Method Contour algorithm “Onion Husk” algorithm simulated annealing Method Traveling Salesman problem
在线阅读 下载PDF
Combining deep reinforcement learning with heuristics to solve the traveling salesman problem
11
作者 Li Hong Yu Liu +1 位作者 Mengqiao Xu Wenhui Deng 《Chinese Physics B》 2025年第1期96-106,共11页
Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs... Recent studies employing deep learning to solve the traveling salesman problem(TSP)have mainly focused on learning construction heuristics.Such methods can improve TSP solutions,but still depend on additional programs.However,methods that focus on learning improvement heuristics to iteratively refine solutions remain insufficient.Traditional improvement heuristics are guided by a manually designed search strategy and may only achieve limited improvements.This paper proposes a novel framework for learning improvement heuristics,which automatically discovers better improvement policies for heuristics to iteratively solve the TSP.Our framework first designs a new architecture based on a transformer model to make the policy network parameterized,which introduces an action-dropout layer to prevent action selection from overfitting.It then proposes a deep reinforcement learning approach integrating a simulated annealing mechanism(named RL-SA)to learn the pairwise selected policy,aiming to improve the 2-opt algorithm's performance.The RL-SA leverages the whale optimization algorithm to generate initial solutions for better sampling efficiency and uses the Gaussian perturbation strategy to tackle the sparse reward problem of reinforcement learning.The experiment results show that the proposed approach is significantly superior to the state-of-the-art learning-based methods,and further reduces the gap between learning-based methods and highly optimized solvers in the benchmark datasets.Moreover,our pre-trained model M can be applied to guide the SA algorithm(named M-SA(ours)),which performs better than existing deep models in small-,medium-,and large-scale TSPLIB datasets.Additionally,the M-SA(ours)achieves excellent generalization performance in a real-world dataset on global liner shipping routes,with the optimization percentages in distance reduction ranging from3.52%to 17.99%. 展开更多
关键词 traveling salesman problem deep reinforcement learning simulated annealing algorithm transformer model whale optimization algorithm
原文传递
求解SAT问题的拟人退火算法 被引量:27
12
作者 张德富 黄文奇 汪厚祥 《计算机学报》 EI CSCD 北大核心 2002年第2期148-152,共5页
该文利用一个简单的变换 ,将可满足性 (SAT)问题转换为一个求相应目标函数最小值的优化问题 ,提出了一种用于跳出局部陷阱的拟人策略 .基于模拟退火算法和拟人策略 ,为 SAT问题的高效近似求解得出了拟人退火算法 (PA) ,该方法不仅具有... 该文利用一个简单的变换 ,将可满足性 (SAT)问题转换为一个求相应目标函数最小值的优化问题 ,提出了一种用于跳出局部陷阱的拟人策略 .基于模拟退火算法和拟人策略 ,为 SAT问题的高效近似求解得出了拟人退火算法 (PA) ,该方法不仅具有模拟退火算法的全局收敛性质 ,而且具有一定的并行性、继承性 .数值实验表明 ,对于本文随机产生的测试问题例 ,采用拟人策略的模拟退火算法的结果优于局部搜索算法、模拟退火算法以及近来国际上流行的 WAL KSAT算法 。 展开更多
关键词 sat问题 模拟退火算法 拟人退火算法 目标函数 计算机 可满足性
在线阅读 下载PDF
求解SAT问题的退火遗传算法 被引量:9
13
作者 孙强 马光胜 刘晓晓 《小型微型计算机系统》 CSCD 北大核心 2008年第7期1268-1271,共4页
提出一种将遗传算法与模拟退火算法相结合的SAT问题求解算法SAT-SAGA.该算法以遗传算法流程为主体,并把模拟退火机制融入其中,用以调整优化群体,防止陷入局部最优和出现早熟;在进化过程中算法采用了最优染色体保存策略,防止进化过程的发... 提出一种将遗传算法与模拟退火算法相结合的SAT问题求解算法SAT-SAGA.该算法以遗传算法流程为主体,并把模拟退火机制融入其中,用以调整优化群体,防止陷入局部最优和出现早熟;在进化过程中算法采用了最优染色体保存策略,防止进化过程的发散.实验表明:该算法在求解速度、成功率和求解问题的规模等方面都有明显的改善. 展开更多
关键词 sat问题 遗传算法 模拟退火算法
在线阅读 下载PDF
解 packing 及 CNF-SAT 问题的拟物拟人方法 被引量:6
14
作者 黄文奇 许如初 +1 位作者 陈卫东 张京芬 《华中理工大学学报》 CSCD 北大核心 1998年第9期5-7,54,共4页
提出拟物拟人方法.论述了如何按此种方法为NP难问题设计出高效实用的快速求解算法.作为例证,所得出的关于CNF-SAT问题及packing问题的算法,其先进性在国际竞赛及工业生产中得到了显示.
关键词 PACKING问题 拟物 拟人 算法 CNF-sat问题
在线阅读 下载PDF
一种求解Max-SAT问题的快速模拟退火算法 被引量:2
15
作者 吴宇翔 王晓峰 +3 位作者 于卓 谢志新 莫淳惠 曹泽轩 《郑州大学学报(理学版)》 CAS 北大核心 2023年第4期46-53,共8页
最大可满足性问题(Max-SAT)是经典的NP难问题,目标是寻找一组变元赋值使得满足子句个数最多。近年来,随着算例规模在实际应用中的逐渐增大,传统的启发式算法已不再适用。传统模拟退火算法在求解Max-SAT问题时会出现收敛速度慢、局部搜... 最大可满足性问题(Max-SAT)是经典的NP难问题,目标是寻找一组变元赋值使得满足子句个数最多。近年来,随着算例规模在实际应用中的逐渐增大,传统的启发式算法已不再适用。传统模拟退火算法在求解Max-SAT问题时会出现收敛速度慢、局部搜索能力弱,以及无效的盲目扰动等弊端,为此提出一种改进的快速模拟退火算法,针对初始赋值的随机性和盲目性,采用变元权值计算初始解,结合基于概率的随机扰动和选择扰动两种方式,并在Metropolis接受准则中添加记忆功能,用于搜索当前局部最优解,引入高低温两种降温模式,较大程度地提高算法的全局搜索能力,进而加快算法的收敛速度,有效减少求解时间。最后,在公开数据集和随机生成的数据集上进行仿真实验,结果表明,所提算法在求解Max-3-SAT问题上优于传统启发式算法。 展开更多
关键词 最大可满足性问题 模拟退火算法 Metropolis接受准则 启发式算法
在线阅读 下载PDF
Ant-cycle based on Metropolis rules for the traveling salesman problem
16
作者 龚劬 《Journal of Chongqing University》 CAS 2005年第4期229-232,共4页
In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) ... In this paper, recent developments of some heuristic algorithms were discussed. The focus was laid on the improvements of ant-cycle (AC) algorithm based on the analysis of the performances of simulated annealing (SA) and AC for the traveling salesman problem (TSP). The Metropolis rules in SA were applied to AC and turned out an improved AC. The computational results obtained from the case study indicated that the improved AC algorithm has advantages over the sheer SA or unmixed AC. 展开更多
关键词 heuristics algorithm simulate annealing algorithm metropolis rules ant colony algorithm ant-cycle algorithm traveling salesman problem (TSP)
在线阅读 下载PDF
基于改进Jaya算法的规模化自压管网优化设计
17
作者 陈新明 陈嘉诚 杨阳 《排灌机械工程学报》 北大核心 2025年第7期732-739,共8页
为了解决遗传算法(GA)在解决规模化自压管网管径优化中所面临的参数较多导致算法实现困难,以及收敛条件不确定等问题,引入Jaya算法解决管径优化组合问题,并改进了原始算法,使改进后的Jaya算法适用于整数编码的变量优化.在以管网造价为... 为了解决遗传算法(GA)在解决规模化自压管网管径优化中所面临的参数较多导致算法实现困难,以及收敛条件不确定等问题,引入Jaya算法解决管径优化组合问题,并改进了原始算法,使改进后的Jaya算法适用于整数编码的变量优化.在以管网造价为目标函数、标准管径为决策变量,满足自压灌溉水量、水压、流速等约束条件的树状灌溉管网优化数学模型的基础上,使用改进的Jaya算法优化管径;用模拟退火罚函数法处理约束条件,将模拟退火的良好局部寻优能力和Jaya算法的全局搜索能力有机地结合在一起,使管网投资更小、可靠性更高.实例表明:优化结果与经济流速法和遗传算法的计算结果相比较,管网投资分别减少了34.8%和10.3%,管段水头利用率由19.51%提高到了73.07%,路径水头利用率从21.22%提高到了66.91%. 展开更多
关键词 规模化自压管网 管径优化 模拟退火 Jaya算法 组合优化问题
在线阅读 下载PDF
基于多旅行商问题建模的地铁乘务排班计划优化
18
作者 薛锋 肖恩 +2 位作者 杨颖 王金成 罗建 《交通运输系统工程与信息》 北大核心 2025年第2期261-272,共12页
针对地铁乘务排班计划问题,本文借鉴多旅行商问题的模型特点进行建模,用排班问题中的乘务片段表示旅行商问题中的城市,乘务片段的接续时间表示旅行商问题中城市间的距离,综合考虑各班次最长在班时间、连续值乘时间、间休时间和就餐时间... 针对地铁乘务排班计划问题,本文借鉴多旅行商问题的模型特点进行建模,用排班问题中的乘务片段表示旅行商问题中的城市,乘务片段的接续时间表示旅行商问题中城市间的距离,综合考虑各班次最长在班时间、连续值乘时间、间休时间和就餐时间等约束,以乘务片段接续时间最短和乘务人员工作时间方差最小为优化目标,建立非线性0-1整数规划模型。基于多旅行商问题的求解思路,设计遗传模拟退火混合算法求解模型。最后,以成都地铁5号线为例验证算法,并与多种优化算法编制方案进行对比分析。实例分析结果显示,相比于ADMM(交替方向乘子法)算法和G-SPFA(基于贪婪思想的最短路)算法,本文优化后的排班方案在乘务任务数量优化率分别为17.9%和23.1%,接续时间方面的优化率分别为15.8%和12.1%,能够有效降低企业的人力成本,提高司乘员的值乘效率,验证了模型的有效性。 展开更多
关键词 城市交通 多旅行商问题 遗传模拟退火算法 乘务排班计划
在线阅读 下载PDF
不确定需求下异构电动物流车辆的路径优化研究
19
作者 初良勇 王嘉宁 丁静茹 《计算机工程与应用》 北大核心 2025年第8期294-306,共13页
随着国家政策的推动和新能源技术的发展,电动物流车辆在财政补贴、限行政策、节能环保和运营成本等方面相较于传统燃油车辆展现出显著优势,因而越来越多的物流企业在城市配送中采用电动物流车。研究了异构电动车队在应对客户需求不确定... 随着国家政策的推动和新能源技术的发展,电动物流车辆在财政补贴、限行政策、节能环保和运营成本等方面相较于传统燃油车辆展现出显著优势,因而越来越多的物流企业在城市配送中采用电动物流车。研究了异构电动车队在应对客户需求不确定性和时间窗要求时的路径优化问题,并针对电动车辆续航里程有限和配送途中充电等实际约束,构建了一个以最小化配送总成本为目标的优化模型。为有效求解该模型,提出了一种结合遗传算法与模拟退火算法的混合方法。实验结果表明,所提出的模型和算法能够显著降低物流配送成本,并为交通和物流企业解决路径优化问题提供了有力的理论支持。 展开更多
关键词 车辆路径问题 异构车型 电动物流 遗传-模拟退火算法
在线阅读 下载PDF
多车程时间窗团购车辆配送路径研究
20
作者 杨健 王赟鹏 《物流科技》 2025年第9期96-100,108,共6页
针对团购配送车辆多趟次运输和客户时间要求的多车程多时间窗车辆路径问题,针对团购车辆配送存在效率低、成本高等问题,考虑车辆最大行驶距离、车辆载重、时间窗等约束,构建以最小化使用车辆和总配送距离为目标的混合整数规划模型,设计... 针对团购配送车辆多趟次运输和客户时间要求的多车程多时间窗车辆路径问题,针对团购车辆配送存在效率低、成本高等问题,考虑车辆最大行驶距离、车辆载重、时间窗等约束,构建以最小化使用车辆和总配送距离为目标的混合整数规划模型,设计改进蚁群算法求解;以轮盘赌运算参与解的构造,引入模拟退火新解接受准则和2-opt优化算子避免陷入局部最优解,并以此改变信息素更新策略。通过多种规模实验算例分析,验证了改进蚁群算法的有效性和稳定性。 展开更多
关键词 多车程 车辆路径问题 蚁群算法 模拟退火 2-opt优化
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部